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Abstract 
 

Analysis Techniques to Incorporate Climate Change Information into Seattle’s 

Long Range Water Supply Planning. 
 

Matthew W. Wiley 
 

Chair of the Supervisory Committee: 

Professor Richard N. Palmer 

Department of Civil and Environmental Engineering 

 

The preponderance of evidence in the scientific community supports the theory 

that global climate is changing.  The effect of climate change on natural and 

man-made systems remains less certain.  Municipal water supplies, particularly 

those that rely on summer snow-melt to augment storage capacity, are at risk 

of significant changes from the historic streamflow regime to which they have 

become accustomed.  There are few standardized methods established for 

assessing the impacts of climate change to municipal water supplies.  Frederick 

and Gleick (1999) propose evaluating climate change impacts on water 

resources using a three stage modeling approach: General Circulation Models 

(GCMs) to simulate global climate, basin scale hydrology models, and water 

resource system simulation models.  This research explores an application of 

the Frederick and Gleick method to the water supply system for the city of 

Seattle, Washington.  Specific attention is given to the techniques necessary for 

downscaling climate data from the global scale to the basin scale and to the 

uncertainties associated with each step of the modeling sequence.  The greatest 

source of uncertainty in the modeling process arises from the wide range of 

future scenarios produced by GCMs. This uncertainty is addressed by 

incorporating multiple climate models at every stage of the process and using 

the range of values produced to generate an ensemble average that quantifies 

the most likely impact.  The ensemble average is bracketed by an uncertainty 

envelope based on the range and spread of the individual GCM ensemble 

members.  
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1 Introduction 
 
Changes to the regional and local climate over the next 50 years will 

fundamentally alter the hydrology of the river systems on which the City of 

Seattle is dependant for its water supply.  Seattle Public Utilities, as the 

principal provider of retail and wholesale drinking water throughout King 

County, has the responsibility to anticipate changes in water demands and 

availability, and to act in a manner that guarantees a reliable water supply for 

its customers.  Climate change information can be incorporated into the long-

term water supply planning within the guidelines of existing rules and 

regulations.  SPU's parallel planning policy encourages the use of emerging 

fields of information, and the state's required water supply plans provide the 

occasion for re-evaluating traditional yield estimates (SPU, 2000a).  Within 

this planning framework, climate change information can be gradually 

introduced as confidence in future projection increases.  The incremental and 

iterative nature of long-term system planning prevents the need for a drastic 

shift in planning paradigms. 

 

Because there is no standard for the inclusion of climate change information 

into decision making, this is a difficult task.  The goal of this research project 

is to establish and create a methodology for the use of climate change 

information in the City of Seattle’s long-term water supply planning.  An 

analysis of the projected impacts of climate change on Seattle’s water supply is 

also performed.  This analysis introduces methods for system evaluation that 

consider the uncertainty in climate information and the presence of a range of 

potential impacts. 

Physical Setting 
The City of Seattle and the surrounding metropolitan area’s drinking water 

needs are provided by waters from two surface and one groundwater source.  

The surface waters originate in the Cedar and South Fork Tolt watersheds 
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which are situated along the western slope to the Cascade Mountains (Figure 

1.1).  The portions of these watersheds located above the municipal diversions 

are wholly owned by the City of Seattle and are closed to the public.   

 

Chester Morse Reservoir, aka 
Cedar Lake

SF Tolt Reservoir 

 
Figure 1.1 – Seattle Public Utilities service area (light yellow) and 
water supply basins on the Cedar River (yellow outline) and the South 
Fork Tolt River (red outline). 

 

The climate of the region is classified as ‘Mediterranean’ meaning that the 

marine influence results in relatively mild temperature year round with 

pronounced wet and dry seasons.  The low lying portions of the region see 

average temperatures ranging from around 25° C in the summer to 7° C in the 

winter.  Temperatures are considerably cooler at higher elevations.  The Cedar 

River basin experiences an average precipitation of nearly 210cm per year 

while the Tolt experiences just over 243cm per year.  These values are 

averages over the entire basin; actual precipitation in the basin is strongly 

correlated with elevation.  The upper elevations of the Cedar River watershed 

receive as much as 295cm per year on average, while the lower areas receive 

as little as 88cm per year. 
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The Cedar River watershed and, to a lesser degree, the Tolt are spatially 

situated such that the basin straddles the average snow line elevation for the 

area.  The upper portions of the basin receive the majority of their winter 

precipitation as snow, while rain falls nearly year round in the lower areas.  

This physical setting results in what is known as a transient watershed; 

streamflows in transient watersheds are characterized by a two peak 

hydrograph (Figure 1.2).  The first fall peak is caused by the onset of the wet 

season bringing heavy fall rains to the lower basin and snow at the upper 

elevations.  The second, or spring, peak is caused by the melting of that snow.  

The significance of the two peak hydrograph lies in the reliance of the water 

supply system on spring time storage in the form of snowpack.   

 

Average Annual Inflow to the South Fork Tolt Reservoir
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Figure 1.2 – Smoothed Average Annual Hydrograph (red) with quartile 
distribution to show range of natural variability.  The peak which occurs 
in late May is due to snow melt, this peak is important for refilling of 
the city’s reservoirs.  
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The Cedar and Tolt basins each have one storage reservoir (Figure 1.1); the 

active storage capacity of these reservoirs represents approximately 34% of the 

combined annual flows of the rivers, and can provide for approximately three 

months of summer demands levels while also maintaining the minimum 

instream flow requirements.  This amount of storage represents 55% of the 

annual firm yield of the system.  It is possible for the volume of constructed 

storage to be less than the volume required for delivery because the annual 

mountain snowpack acts as a supplemental reservoir, storing water well into 

the summer. 

Evidence of Climate Change 
Climate change is being studied extensively.  The Pacific Institute has 

compiled an on-line bibliography of over 920 studies of climate change and 

impacts in the U.S. (Chalecki and Gleick, 1999).  Records of climate 

observations provide evidence that climate change is already occurring.  The 

Intergovernmental Panel on Climate Change, and the National Assessment 

Synthesis Team agree that the evidence demonstrates that climate change has 

already occurred over the past 100 years (IPCC,2001; NAST, 2000).  Figure 1.3 

presents the average daily maximum temperature for January within the 

Cedar River basin over a 69 year period.  The winter time temperatures trend 

is evidence that climate change may already be affecting the Puget Sound 

region.  Across the Pacific Northwest, a downward trend in April 1st snow-pack 

has been observed.  The rate of snow pack reduction is greatest among low 

elevation monitoring stations, implicating global warming as the likely cause 

(Mote, 2003) 

 

Method of Climate Change Impact Assessment 
When assessing climate change impacts on water resources, the use of GCMs 

represents only the first step in a multi-step evaluation process.  In a report 

produced for the Pew Center on Global Climate Change, Frederick and Gleick 

(1999) propose a five step process that includes: 
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• Using GCMs to simulate future climate conditions on a global scale, 

• The re-scaling of global climate data down to a river basin scale, 

• Hydrologic modeling of downscaled GCM data to simulate stream flows 

under altered climate conditions, 

• The use of a systems simulation model to assess the effects of altered 

stream flows on water resource systems, and 

• Assessment of impacts on the users of water resource systems, 

including potential changes in demand and demographics under 

climate change scenarios. 

 

Average Daily Maximum Temperature for 
January at Cedar Lake
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Figure 1.3 – Average Daily Maximum temperature for February at the 
Cedar Lake Meteorological Station.   
 

This study is an application of the Frederick and Gleick method.  Each step in 

the process is examined in detail with regard to the different options and data 

available.  At each level the effects of climate change are evaluated. 
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Uncertainty is examined and quantified in terms of familiar water resource 

metrics when possible.  Each step of the Frederick and Gleick process is 

addressed by a specific chapter of this report.  Chapter 2 reviews the basic 

properties and results from General Circulation Models.  Chapter 3 describes 

the development and validation of a statistical downscaling method.  GCM 

projected future climate in the Puget Sound Region, and the range of 

uncertainty caused by downscaling are also examined.  Chapter 4 introduces 

a distributed hydrology model used for hydrologic simulations and examines 

the hydrologic implications of climate change.  Chapter 5 describes the results 

of the climate impacts analysis using a reservoir operations model.  Chapter 6 

summarizes the methods developed and reviews the climate change impacts 

that are predicted for the Seattle water supply system. 
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2 General Circulation Models 
 

A GCM is a mathematical representation of the Earth’s climate system.  GCMs 

are used to simulate human-induced climate change.  The effectiveness of 

GCMs in studying climate change depends on the level of complexity and 

ability to simulate the main physical processes that effect climate.  The IPCC’s 

Third Assessment Report identifies more than 30 GCMs that have been used 

to study climate change (IPCC 2001a).  GCMs are used in the study of climate, 

climate change, and the impacts of climate change on both natural and 

human systems.   The effectiveness of GCMs in simulating global climate 

depends on the level of complexity and ability to simulate the main physical 

processes that effect climate.  Two important uncertainties and complexities 

associated with the use of GCMs for climate impact analysis are:  

• Selection among the suite of GCM computer models available that are 

being used to simulate the Earth’s climate. 

• Assumptions regarding global social and political development patterns 

that are the basis of all future climate predictions. 

 

This chapter describes several of the most important features of GCMs, 

including the strengths and weaknesses present in the current generation of 

GCMs, as well as presenting an analysis of GCM performance at both global 

and local scales.  An analysis of uncertainty at the local scale will provide an 

example of how the uncertainties form GCMs can be quantified to a specific 

site. 

Generic Details of General Circulation Models 
General Circulation Models (GCMs) share a number of characteristics that are 

common to all models that attempt to simulate natural processes.  A 

description of these common features as well as the range of values seen in 

the current generation of GCMs is described in this section. 
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Resolution  
All GCMs function by representing the land, air and water of the earth as 

disaggregated cells which are analyzed individually.  The physical 

phenomenon influencing atmospheric and ocean processes are calculated at a 

resolution defined by the cell size.  Cells are described by their two 

dimensional projection on the earth, an area, and by their depth (as height) 

resulting in a three dimensional representation.  Fluxes (exchanges of heat, 

air, and water) occur between adjacent cells.  The resolution of a GCM 

typically refers to the size of the cells associated with the most important 

physical process.  Different GCMs have different resolutions; additionally the 

resolution of the various physical components that comprise a GCM can also 

vary within a specific model.   

 

The resolution at which a model simulates phenomenon affects both the 

computational speed of a model run and the complexity of the modeling 

details.  The resolution of available GCMs ranges from 2.0 to 5.6 degrees 

(latitude or longitude) with between 9 and 30 layers for the atmosphere, and 

0.67 to 5.6 degrees with 12 to 45 layers for the ocean. 

 

Greater resolution may increase the potential for accurate predictions at a 

given point.  The resolution of GCMs will be increased as computing power 

increases.  To date, however, little systematic research exists to quantify the 

improvements, if any, that can be had by increasing model resolution.  It is 

anticipated that small scale grids will better model regional effects, but the 

courser resolutions represent global interactions fairly well (IPCC 2001a).  The 

highest resolution GCMs currently use 2.8° latitude × 2.8° longitude grids and 

represent global patterns well.  Finer resolutions may not improve the global 

results.  However, since most applications of the GCM outputs are interested 

in climatic effects at a regional or local scale, research continues to produce 

finer resolution models. 
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Components 

GCMs can contain several components.  Simple models have been used to 

successfully simulate the dynamics of the individual components of the earth 

system.  GCMs typically are comprised of multiple models, each representing a 

different portion of the greater climatic system.  Climate models which contain 

several linked models are referred to as coupled models. The principal 

components of coupled models are the: 

• Atmosphere 

• Ocean 

• Sea Ice model 

• Land Surface (including river flows, and terrestrial cryosphere) 

 

In coupled models, multiple components act individually to model different 

aspects of the total global climate.  Each component is generally developed 

separately and operates with its own set of input and output parameters.  A 

coupled model connects disparate components via a coupler.  The coupler 

interprets the inputs and outputs from the individual components and 

integrates the flow of data between different components.  This arrangement 

makes possible the use of model components using different resolution scales.   

Flux adjustment 
In their earliest versions, most GCMs required the use of flux adjustments to 

accurately simulate the present day climate (IPCC 1996).  Flux adjustments 

are empirically derived constants for the heat, water, and momentum 

exchanges between the atmospheric and oceanic components of the models.  

These adjustments are not based on any physically observed phenomenon and 

do not always enforce the principals of conservation of mass and energy.  Flux 

adjustments were necessary to prevent drift in model results.  Flux adjusted 

models are able to reproduce the current climate accurately.  However, the 

uncertainty added by the necessity of flux adjustments has encouraged model 

builders to improve models so that flux adjustment is not needed (IPCC 2001). 
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Forcing scenarios 
The common assumption of GCMs is the effect of atmospheric gases on the 

input balance of solar radiation.  The degree to which atmospheric gases 

change the net input of solar energy depends upon the chemical nature of the 

gas, and the concentrations at which it is found.  The most well known gas 

affecting solar radiation is carbon dioxide (CO2); however, many other 

chemicals (CH4, N2O, and the halocarbon family) known collectively as 

greenhouse gases, also affect solar inputs.  Greenhouse gases cause an 

increase in the net solar radiation reaching the earth, resulting in an increase 

in the heat retained by the earth.  The degree to which a chemical affects the 

earth's relative energy budget (or heat input) is described by its forcing.   

Naturally occurring aerosols, such as SO4-, have been shown to have an 

opposite effect, reduction of overall heat input.  The reduction in net solar 

radiation is represented as a negative forcing, described in terms of power per 

unit area, specifically watts per square meter (W/m2).  Because the affect of 

these forcings is incident on solar radiation, they are referred to as radiative 

forcing. 

 

GCMs account for the multiple radiative forcings in a variety of manners.  

Frequently, however, for simplicity of analysis and discussion, radiative 

forcings are combined in a linear summation and represented as a single 

quantity of equivalent CO2.  In this manner numerous possible future scenario 

variations are reduced to a more manageable, yet still meaningful number.  

Combinations of forcing scenarios have been compiled by the IPCC based on 

different "storylines" of the earth's future.  The scenarios are described in the 

Special Report on Emission Scenarios (SRES).  The SRES scenarios represent 

a standard set of forcings used by all GCMs (IPCC 2001a). 

 

There are 40 climate change scenarios described in Special Report on 

Emission Scenarios (SRES) that accompanies the third IPCC assessment.  The 

40 are variations of four distinct families of scenarios.  Of the 40 variations, 



 11

 

the SRES recommends 6 specific scenarios to be used in GCM simulations.  

The designation of standard forcing scenarios is useful in comparing the 

results from different GCMs, as well as analyzing the effects of parameter 

variation within each GCM.  Emission scenarios issued as accompaniments to 

the second IPCC assessments are referred to collectively as IS92.  Occasionally 

model results in the scientific literature will refer to this older set of emission 

scenarios. 

 

There are no probabilities of occurrence assigned to the different forcing 

scenarios recommended in the SRES.  This presents a problem when using 

GCM output for hydrologic analysis because it removes the ability to assign 

likelihood to hydrologic events predicted with the GCM.  Extreme hydrologic 

events are typically referenced to the probability of their occurrence which 

greatly facilitates risk management decisions.  The consequences (physical 

and economical) of a 50 year flood or a 100 year drought for example, can be 

balanced against the probability of the event happening.  Predictions of future 

hydrologic conditions derived from outputs of GCMs cannot be assigned 

occurrence probabilities.   

 

The six forcing scenarios recommended in the SRES represent different 

versions of worldwide social and economic development patterns and are 

considered as illustrative examples of the range of possible futures.  

Probabilities cannot be assigned because of the infinite number of variables 

that affect world development.  Knowing which forcing scenario is used in a 

GCM is important to interpreting the output.  Table 2.1 presents the 

assumptions associated with each of the six recommended illustrative 

scenarios.  Because there is a significant time lag between the emission of 

greenhouse gasses and their effect on atmospheric climate, the first 40 years 

of each of the SRES scenarios, while having considerably different emissions 

levels, produce roughly similar climates.  
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Table 2.1 – SRES GCM forcing scenario storylines 

Scenario  Key details 

AIF1 

Family A1 assumes rapid economic and population growth 
which peaks mid century and declines thereafter.  It also 
assumes introduction of new, more efficient technologies and 
declines in global economic disparities resulting in a more 
homogenized worldwide social and economic structure.  The 
distinction F1 represents a continued reliance on fossil fuel 
sources. 

A1T 

Also in the A1 family, A1T assumes the same social and 
economic conditions as above; however, the T designation 
represents a shift to non-fossil fuel, non-carbon emitting fuel 
sources.  A1T therefore has lower long-term values for 
atmospheric forcings by greenhouse gases.  
 

A1B 

Another A1 scenario with the same social and economic 
conditions as above.  The B designation represents a more 
balanced shift between fossil fuel and alternative energy 
sources.  The atmospheric forcings represented are about 
halfway in between those of A1F1 and A1T. 

A2 

Scenario A2 describes the development of a heterogeneous, 
insular and fragmented global population with greater regional 
disparities in fertility, economic development, and technological 
advancement.  Overall there is a greater increase in global 
population.  Energy sources are not globally uniform, resulting 
in some regions with high carbon emissions and other with low 
carbon emissions. 

B1 

B1 is similar to A1 in terms of global population patterns, but 
with rapid shifts towards service and information economies.  
There is a reduction of material consumption and shift towards 
resource efficient technologies.  Greater global harmony and 
joint initiates towards problem solving.  This scenario represents 
the lowest rate of future total carbon emissions 

B2 

As in B1, B2 presents a shift towards more environmental 
technologies, but with the less global and more regionalized 
pattern.  B2 represents greater social and economic 
heterogeneity similar to A2.  Population growth is greater than 
that in B1, but less than A2.  Total carbon emissions are greater 
than B1 and less than all of the A1 and A2 scenarios.  

(adapted from SRES 2000)
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It is generally recommended when modeling global climate change to use a 

variety of social scenarios.  No probability of occurrence is assigned to any of 

the scenarios.  The greatest understanding of possible climate changes will 

come from analyzing the entire range and keeping in mind the scenario at 

work when interpreting results.   

 

Frequently multiple runs of a GCM model are made using the same forcing 

scenario, and the final results are averaged together to create an ensemble of 

the mean climate change for that scenario.  High variability in the ensemble 

results implies the climate change may be a function of random oscillations 

rather than the result of the forcing scenario.  Multi-modal ensembles are 

collections of averaged runs from several different GCMs, rather than multiple 

runs of the same GCM.  Use of multi-modal ensemble results is a technique 

for minimizing bias present in a particular model. 

 

Figure 2.1 demonstrates the average global temperature increase determined 

using 19 different GCMs.  The multimode ensemble mean demonstrates the 

overall trend of temperature increase without the variations and fluctuations 

of each individual model.   

 

Ensemble means are appropriate for determining general trends and for 

creating easily presentable results representing a single output variable.  Use 

of ensemble means for application to predictive hydrologic modeling is 

generally not considered appropriate due to the difficulties associated with 

combining the output data sets from multiple models in a manner suitable for 

use as input to a hydrologic model.  Ensemble means are appropriate for 

providing a sense of the agreement between different GCMs and can indicate 

whether or not the GCM being used is generating reasonable results.  
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Figure 2.1 – Globally averaged temperature change from the 19 GCMs used in 
the CMIP2 simulations. (Unit: °C).  Reproduced from IPCC 2001a 

 

GCM Output 
Large supercomputing facilities are required to operate a climate model.  The 

computational time required is typically on the scale of several hours per year 

of modeled time.  For this reason, the most accepted, reliable, and verifiable 

GCMs have been developed, maintained and operated by large research 

institutions.  Results from GCM scenarios are frequently made available to the 

scientific community through data archives accessible over the internet.  The 

IPCC and the developing institutions maintain databases of output from the 

many different models over several different forcing scenarios.  Model output 

consists of climatic data, such as temperature, air pressure, humidity, and 

wind speed, given for a network of grid points which cover the earth’s surface.   

 

Because different models have different resolutions, different grid systems, 

and generate different data, it is difficult to directly compare the models.  Post-
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processing of the data with a geographic information system (GIS) or other 

data analysis software is required.   

 

Typically the use of GCM output in studies with a sub-global spatial domain 

requires the “downscaling” of the data in order to reflect the features of a 

specific region.  Details on several downscaling techniques are discussed in 

the previous chapter. 

 

Limitations of Current Models 
The IPCC has identified a number of areas in which GCMs need further 

refinement and improvement.  These include: 

• Representation of small scale ocean circulation, 

• Chemical and physical properties of the stratosphere responsible for 

such phenomenon as the ozone hole, 

• Dynamic properties of water vapor and cloud formation and its effects 

on the radiation balance, 

• Sea ice dynamics and the associated effects on salinity and albedo, 

• Effects of natural and anthropogenic aerosols, 

• Land surface parameterizations and their effects on the global water 

balance, 

• Uncertainty associated with human perturbations of the carbon cycle.    

 

The following section briefly discusses three of these areas: water vapor and 

clouds, aerosols, and land surface processes.  The first two topics are 

responsible for the largest degree of uncertainty in the current generation of 

GCMs.  Land surface properties are addressed because of the direct 

connection between these processes and our current efforts to assess climate 

change impacts in the area of water resources. 
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Representation of water vapor and cloud effects 
Atmospheric water vapor and clouds significantly impact the heat budget of 

the earth.  Figure 2.2 illustrates different components which comprise the 

incoming and outgoing, short and long wave radiation budget.  Changes in 

climatic dynamics which effect the historic distribution of clouds and water 

vapor may alter the equilibrium state.  The achievement of a new equilibrium, 

balancing the incoming and outgoing radiation, requires a change in surface 

temperature.   

 
Figure 2.2 – Earth’s average heat balance in percent.  Reproduced from 
Understanding Climactic Change: a program for action, United States 
Committee for the Global atmospheric Research Program, National Academy of 
Sciences, Washington D.C., 1975 

 

Water vapor is the most potent of all greenhouse gases; however, not all water 

present in the atmosphere exerts the same influence on atmospheric 

dynamics.  Water vapor in the stratosphere is a very potent greenhouse gas, 

whereas water vapor in the lower atmosphere has less of an effect.  Water 

vapor near the surface, in the turbulent, well-mixed boundary layer, causes 
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little greenhouse effect, while water vapor above this boundary layer can have 

a significant effect.  The modeling of water vapor distributions has improved in 

recent years; however, a critical uncertainty remains in the modeling of the 

phase shift dynamics which give rise to clouds (IPCC, 2001). 

 

Uncertainty in cloud processes is the cause of the greatest amount of 

uncertainty in the current generation of models.  Clouds can absorb or reflect 

incoming short wave radiation, which causes cooling, or they can absorb and 

emit long wave radiation, which causes warming.  The balance between these 

two processes is dependant upon the cloud height, thickness, and other 

properties.  The physical processes which determine the properties of an 

individual cloud are exceedingly complex with multiple feedback processes.  

The width of the range of projected climate warming (1.5°C to 4.5°C) is largely 

due to uncertainties in the cloud formation processes (IPCC, 2001). 

 

The current generation of GCMs uses a “clear-sky” approach to simulate the 

water vapor feedback process.  This is akin to considering water vapor and 

clouds as separate processes as opposed to different phases of the same 

process.  Current development is leaning towards incorporating cloud effects 

and water vapor effects in to a single water feedback process (IPCC, 2001). 

Effects of anthropogenic aerosols 
Anthropogenic aerosols are classified into five main groups: 

• Sulfate aerosols,  

• Black carbon aerosols,  

• Organic carbon aerosols,  

• Mineral dust aerosols,  

• Nitrate aerosols.  

Additionally, black carbon and organic carbon aerosols are frequently further 

subdivided into those of fossil fuel origin and those of biomass burning origin.  

While research has improved recently, the effects of each of these aerosols, 
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and their spatial and temporal distributions are poorly understood (IPCC 

2001a). 

 

Sulfur aerosols have a cooling effect on the atmosphere.  The radiative forcings 

from these aerosols are estimated to be between -0.26 W⋅m-2 to -0.86 W⋅m-2.  

This can be compared to the estimated forcing from a doubling of CO2, which 

is approximately 3.7 W⋅m-2 (IPCC, 2001).  Black carbon aerosols are assumed 

to have a positive, or warming, forcing effect from 0.16 to 0.36 W⋅m-2.  Organic 

carbons appear to have a less potent and cooling effect, -0.09 to –0.02 W⋅m-2 

(Cooke et al., 1998, Haywood et al. 1997 and 1998, Myhre et al., 1998).  Few 

studies exist on the effects of mineral dust aerosols, but a slight cooling effect 

is assumed.  Researchers note that only an estimated 20%-50% of mineral 

dust aerosols are of anthropogenic origin (Sokolik and Toon, 1996, Tegen and 

Fung, 1995, 1996).  Only three estimates of the effect of nitrate aerosols are 

reported in the IPCC’s third assessment report and no consensus exists on the 

effect of nitrate aerosols (IPCC, 2001).  While it is suspected that nitrate 

aerosols may have a significant forcing effect, their semi-volatile nature makes 

study difficult.  It is likely that the effects of nitrate aerosols will remain 

uncertain for the near future (IPCC, 2001). 

 

In addition to the direct affect aerosols have on the global radiative forcing 

balance, there are also indirect effects on the formation of cloud droplets (IPCC 

2001a).  The indirect effects of increased anthropogenic aerosols can be 

considered as twofold.  The first aspect is due to an overall increase in 

aerosols, and therefore an increase in available raindrop condensation nuclei.  

This results in an increase in the number of cloud droplets and a decrease in 

droplet size (Twomey, 1974).  The second aspect is the result of the first; if 

cloud droplets are smaller and more numerous, there will be a subsequent 

decrease in precipitation efficiency, resulting in longer lived, and thicker 

clouds (Albrecht, 1989; Pincus and Baker, 1994).  The extent of these effects 

can only be theorized.  The current generation of GCMs includes a very 
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simplified and incomplete representation of these effects.  Simplification is 

necessary due to the extent of the uncertainty involved in these processes.  

Any attempt to more explicitly model these possibilities would require a much 

greater understanding of the underlying physical phenomenon (IPCC, 2001). 

Land surface processes 
The flow routing of rivers, including the transport of water from precipitation 

to ocean inflow and the evapotranspiration process, which is critical to 

representing the terrestrial portion of the hydrologic cycle, were poorly 

represented in the earlier generations of GCMs (IPCC, 2001).  Currently land 

surface parameterizations are becoming increasingly complex, incorporating 

radiation absorption, momentum transfer, and biophysical control of 

evapotranspiration (Sellers, 1997).  Changes in land surfaces processes, either 

anthropogenic or natural, are not generally modeled in GCMs.  When running 

simulations over several centuries, it is plausible to imagine changes to 

vegetative cover.  The lack of both a global data set of historic land use 

changes and a systematic approach for modeling the vegetative response to 

climate change represent weaknesses in the current generation of GCMS that 

are likely to remain a problem for some time (IPCC, 2001). 

 

The complexities of the modeled land surface processes in the current 

generation of GCMs are categorized into four schemes by the IPCC.  While 

each model uses a slightly different mechanism, the categories describe the 

general complexity of the approach.  The categories define both the manner in 

which soil moisture and soil temperatures are addressed.  The four basic land 

surface schemes are: 1) simplified bucket scheme, 2) a modified bucket 

scheme, 3) multiple layer schemes, and 4) complex schemes.  

 

The “bucket” hydrology scheme assumes a constant soil moisture capacity.  

When soil is not saturated, water accumulates as the difference between 

precipitation and evaporation.  The evaporation rate is determined as a 
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function of soil moisture content and the potential evaporation rate from a 

completely wet surface.  When the soil water content reaches the assumed 

capacity, any surplus water is released as runoff (Manabe et al., 1991).   

 

The remaining schemes are essentially increasing layers of complexity added 

to the basin bucket approach. The modified bucket scheme allows for spatially 

varying soil moisture capacity and soil resistance.  This is analogous to a 

distributed network of different types of buckets.   Multiple layer temperature 

schemes add complexity by modeling the land surface in a manner similar to 

the atmosphere and ocean with a series of parallel layers. Several layers of 

grid cells allow for the modeling of temperature gradients with the soil column.  

The complex soil moisture scheme uses multiple layers for both temperature 

and moisture. (IPCC, 2001). 

 

Model Evaluation  
The Coupled Model Intercomparison Project (CMIP), established as a part of 

the World Climate Research Program, compares 29 different coupled models 

under a variety of forcing scenarios.  From these 29 seven are examined in 

greater detail (Table 2.2) as a part of this research.  These seven are the 

commonly used GCMs and are widely accepted by the scientific community 

and have archived data freely available.  Greater information is available 

concerning the development and testing of these models.  Results from other 

models occasionally appear in the figures produced by the CMIP.  While these 

results are useful for examining the relative performance of the models, they 

will not be examined in detail. 

 
Comparisons and evaluation of the relative performance of coupled models is 

difficult.  All models have strengths in some areas and weaknesses in others.  

No model has emerged as “the best” available to the scientific community.  No 

single criterion exists to evaluate a model’s overall performance.  To evaluate 

the models we must choose criteria that are relevant to the purposes for which 
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we intend to use the model.  Eight measures of model performance are 

presented below with a brief description of the model attribute and a graphical 

representation of the results.  Results for the most current versions of all 

GCMs are not always available for purposes of comparison.  In these cases 

previous versions of the model from the same developing institution have been 

substituted. 

 
Table 2.2 – GCMs under consideration for use in SPU study. 

Model Name   
(current version) 

Developing 
organization(s) 

General Reference 

CGCM2 Canadian Centre of 
Climate Modelling and 
Analysis 
 

Flato and Boer, 2001 
 

CSIRO mk2 Commonwealth 
Scientific & Industrial 
Research Organisation 

Gordon and O’Farrell, 
1997 

CSM1.3 
 

NCAR – National 
Center for 
Atmospheric Research 

Boville et al., 2001 

DOE PCM 
 

NCAR , US 
Department of Energy, 
Los Alamos, Naval 
Post Graduate 
Program, and US 
Army Corps of 
Engineers. 

Washington et al., 
2000 

ECHAM4 Netherlands center for 
Climate Research  
(Centrum voor 
Klimaatondarzoek) -  
and Max Planck 
Institute (MPI) 

Roeckner et al., 1996 

GFDL_R30  Geophysical Fluid 
Dynamics Laboratory 
(GFDL) & NOAA 

Knutson et al., 1999 

HadCM3 Hadley Centre for 
Climate Prediction 
and Research 

Gordon et al., 2000 
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Two measures of model performance examined are future temperature and 

precipitation predictions.  The climate change runs examined are based on the 

A2 and B2 SRES forcing scenarios.  The future climate prediction comparison 

features only the nine models being considered in detail by this paper.  The 

final criteria to be examined is the flux adjustment status of the current 

generation of models  

 
Figure 2.3 and Figure 2.4 show the climate responses to the SRES A2 and B2 

scenarios over the next 100 years for nine of the models tested by the CMIP.  

The figures illustrate the trends in temperature increase and precipitation 

change.  The mean value of the nine models predicts a temperature shift of 

approximately 3°C and 2.5°C for scenarios A2 and B2, respectively.  Likewise 

the mean shift in precipitation is an increase of approximately 3% for both 

scenarios.  It should be noted that considerable variation exists between the 

models. 

 

Comparisons of predicted future climatic conditions cannot be considered as a 

method for evaluating the reliability or accuracy of a GCM.  These 

comparisons can be useful, however, to compare the relative direction each 

model tends towards.  For example it can be seen in Figure 2.3 that the CCSR 

model generates a warmer prediction than the other models used in the CMIP.  

There is no probability assigned to the accuracy of these predictions, and no 

model can be said to have a “better” prediction.  It can only be said to be 

based on more sophisticated assumptions and to be better at simulating past 

climate. The usefulness of comparisons, such as the ones seen in Figure 2.3 

and Figure 2.4, is an understanding of the relative responses of each of the 

models to a given forcing scenario.  This understanding can be used to 

generate best and worst case scenarios and to know how results in a study, 

which uses GCM output data, might differ if an alternative model had been 

used. 
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Figure 2.3 – Predicted globally averaged temperature change from 1990 to 2100 
under SRES simulations A2 and B2. Units are in degrees Celsius.  (Reproduced 
from IPCC 2001a) 
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Figure 2.4 – Predicted globally averaged precipitation change from 1990 to 2100 
under SRES simulations A2 and B2.   (Reproduced from IPCC 2001a) 
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Flux Adjustment 
Because some GCMs use flux adjustments to mask systemic errors, it is a 

challenge to use their ability to replicate past climate as a selection criteria.  

Table 2.3 presents a list of current GCMs and their flux adjustment status. 

Table 2.3 – Flux adjustments used by a selection of GCMs. 

Model Name 
(current 
version) 

Developing organization(s) Flux 
Adjustments 

CGCM2 Canadian Centre of Climate Modelling 
and Analysis 
 

Heat 
Water 

CSIRO mk2 Commonwealth Scientific & Industrial 
Research Organisation 

Heat 
Water 

Momentum 
CSM1.3 
 

NCAR – National Center for 
Atmospheric Research 

None 

ECHAM4 Netherlands Center for Climate 
Research  
Max Planck Institute (MPI) 

Heat 
Water (annual 

mean only) 
GFDL_R30  Geophysical Fluid Dynamics 

Laboratory (GFDL) NOAA 
Heat 
Water 

HadCM3 Hadley Centre None 
PCM 
 

NCAR , US Department of Energy, Los 
Alamos, Naval Post Graduate Program, 
and US Army Corps of Engineers. 

None 

 

Model Information and Summary 
The properties of seven different GCMs that will be examined in greater detail 

as a part of the downscaling and hydrology chapters are described in this 

section.  The number and location of the grid cells used to represent the 

Western Washington region are also given for each model. 

 

CGCM2 

The Coupled General Circulation Model is in its second generation and is 

being developed by the Canadian Centre for Climate Modelling and Analysis, 

at the University of Victoria, Victoria B.C.  Changes from the first generation 

model were made to improve the representations of ocean mixing and sea ice 

dynamics.  The changes have resulted in a lowering of the projected surface 
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air temperature change by a half of a degree Celsius over 100 years for forcing 

scenario IS92a.  The CGCM2 model uses a resolution of 3.8° × 3.8° with 10 

layers for the atmosphere and 1.8° × 1.8° with 29 layers for the ocean (Flato 

and Boer 2001).  Of the seven GCMs being considered, the CGCM2 model had 

the second and third highest global mean temperature change after 100 years 

for the A2 and B2 scenarios respectively.  In terms of precipitation changes, 

CGCM2 outputs tend to be slightly below the ensemble mean of the nine 

CGMs considered, but generally do not represent the lowest predictions (IPCC 

2001a).  The CGCM2 model incorporates heat and water flux adjustments, 

and the land surface processes are modeled using a modified bucket 

hydrology, with multiple layers of soil temperature (Flato and Boer 2001).   

 

The data points used from the GCGM2 model to represent the region 

surrounding the Seattle water supply basins are given in Table 2.4.  The 

values from these four points were averaged to represent the regional Pacific 

Northwest climate.  Historic data representative of the 20th century is taken 

from the GHG+A.1 model run, future 21st century data is from the SRES A2 

scenario model run. Data sets were acquired from the CCCma online archives 

(CCCma, online resources).   

Table 2.4 – GCGM2 Pacific Northwest Data Points 

Grid Cell index Latitude  
(decimal degrees) 

Longitude  
(decimal degrees) 

3653 50.0995 236.0000 
3654 50.0995 240.0000 
3556 46.3886 236.0000 
3557 46.3886 240.0000 

 

The values in Table 2.4 are shown on a regional map in Appendix B, map 1. 

CSIRO Mk2 
The CSIRO Mark2 was developed by the Commonwealth Science and 

Industrial Research Organisation in Victoria, Australia.  The CSIRO model 

uses a resolution of 3.2° × 5.6° with nine layers for the atmosphere and 3.2° × 
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5.6° with 21 layers for the ocean (Gordon and O’Farrell 1997).   Of the nine 

GCMs being considered, the CSIRO mk2 model had the third and second 

highest global mean temperature change after 100 years for the A2 and B2 

scenarios, respectively.  The CSIRO mk2 model reported the third highest 

precipitation increases using the A2 and B2 scenarios (IPCC 2001 9.3.1).  In 

control runs to replicate the current climate the CSIRO model was the best at 

reproducing the annual mean extents of both sea ice and terrestrial snow 

cover.   The CSIRO mk2 model incorporates flux adjustments for heat, water, 

and momentum (Gordon and O’Farrell 1997).  Land surface processes are 

simulated using a complex, soil-canopy scheme as described by Kowalczyk et 

al. (1994).   This land surface model allows for variable soil types and 

roughness at a sub-grid scale, and monthly variable parameters for surface 

albedo, canopy transpiration resistance, interception storage, snow 

accumulation, and groundwater percolation rates (Gordon and O’Farrell 

1997).   

 

The data points used from the CSIRO mark2 model to represent the region 

surrounding the Seattle water supply basins are given in Table 2.5.  The 

values from these fout points were averaged to represent the regional Pacific 

Northwest climate.  Historic data representative of the 20th century is taken 

from the CS01GS01 model run; future 21st century data is from the SRES A2 

scenario model run. Data sets were acquired from the IPCC data distribution 

gateway online archives (IPCC DDC, online resources) 

 

Table 2.5 – CSIRO mark2 Pacific Northwest Data Points 

Grid Cell index Latitude  
(decimal degrees) 

Longitude  
(decimal degrees) 

2795 49.3779 236.0000 
2796 49.3779 241.0000 
2731 46.1924 236.0000 
2732 46.1924 241.0000 

 

The values in Table 2.5 are shown on a regional map in Appendix B, map 2. 
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CSM1.3 
The Climate System Model was developed by the National Center for 

Atmospheric Research.  The CSM coupled model is currently in its fourth 

iteration. The NCAR has been very active in continually refining and improving 

this model, issuing improved versions on average every two years since 1996.  

The CSM1.3 has a resolution of 2.8° × 2.8° with 18 layers for the atmosphere 

and 2° × 2.4° grid cells with 45 layers for the ocean.  Sea ice is modeled using 

a variable number of layers dependant on current modeled thickness (Boville 

& Gent 1998).  In the A2 and B2 scenario simulations presented in the TAR, 

the CSM1.3 model closely approximated the mean of all represented models 

for both temperature change and precipitation change, falling below the 

median in all cases, but exhibiting a definite central tendency (IPCC 2001a).  

The CSM1.3 model does not incorporate any flux adjustments (Boville and 

Gent 1998).  The land surface model allows for different soil and vegetation 

types to be specified at the sub-grid cell scale with up to four types allowed per 

grid cell.  The freshwater flux, derived from the difference between land 

evaporation and precipitation rates is not currently routed through a river 

runoff model, but is instead evenly distributed across the entire ocean surface.  

A runoff model is in development for future generations of this model (Boville 

and Gent 1998).   

 

The data points used from the CSM1.3 model to represent the region 

surrounding the Seattle water supply basins are given in Table 2.6.  The 

values from these two points were averaged to represent the regional Pacific 

Northwest climate.  Historic data representative of the 20th century is taken 

from the b018.15 model run which features time dependent greenhouse 

gasses and atmospheric sulfur. Future 21st century data is from the SRES A2 

scenario contained in model runs b030.05 and b030.06. Data sets were 

acquired from the Community Climate Systems model archive maintained by 
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University Corporation for atmospheric Research (UCAR), (CSM, online 

resources) 

Table 2.6 – CSM1.3 Pacific Northwest Data Points 

 Grid Cell Index Latitude  
(decimal degrees) 

Longitude  
(decimal degrees) 

6230 46.0447 239.0000 
6358 48.8352 239.0000 

 

The values in Table 2.6 are shown on a regional map in Appendix B, map 3. 

ECHAM4 
The ECHAM model is based on a weather prediction model developed by the 

European Center for Medium Range Weather Forecasts (ECMWF).  The 

ECMWF has been modified by researchers at the Max Planck Institute in 

Hamburg, Germany to make it suitable for long-term climate predictions.  The 

resulting model, ECMWF-Hamburg or ECHAM, is currently in its fourth 

iteration (Roeckner et al 1996).  The ECHAM4 model features 2.8° × 2.8° 

resolution for both the atmosphere and ocean with 19 and 11 layers, 

respectively. The ECHAM4 model produced results for the IPCC A2 and B2 

scenarios which are near the mean for temperature change (fourth highest out 

of nine in both scenarios).  For predicted precipitation changes, ECHAM4 

produces the lowest predicted increase of the nine models (IPCC 2001a).  The 

ECHAM4 model incorporates flux adjustments for both heat and water 

(Roeckner et al 1996).  Land surface processes are modeled using heat and 

water budgets for soil, snow covered and ice covered land.  Vegetative effects 

on infiltration, reflectivity and evapotranspiration are parameterized using 

highly idealized functions (Roeckner et al 1996). 

 

The data points used from the ECHAM4 model to represent the region 

surrounding the Seattle water supply basins are given in Table 2.7.  The 

values from these four points were averaged to represent the regional Pacific 

Northwest climate.  Historic data representative of the 20th century is taken 
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from the MP01GS01 model run featuring historic greenhouse gas and 

sulphate aerosol concentrations. Future 21st century data is from the SRES A2 

scenario model run. Data sets were acquired from the IPCC data distribution 

gateway online archives (IPCC DDC, online resources). 

Table 2.7 – ECHAM4 Pacific Northwest Data Points 

Grid Cell index Latitude  
(decimal degrees) 

Longitude  
(decimal degrees) 

1877 48.8352 236.0000 
1878 48.8352 239.0000 
2005 46.0447 236.0000 
2006 46.0447 239.0000 

 

The values in Table 2.7 are shown on a regional map in Appendix B, map 4. 

GFDL 
The Geophysical Fluid Dynamics lab has produced a series of GFDL climate 

models using different resolutions.  The resolution of the model is designated 

by the R number in the model’s title which represents the size of the grid cells 

used in the atmospheric portion of the model (R30 has a smaller grid cell than 

R15).  Additionally, different versions of the R30 model exist and are 

designated with an a, b, or c which designate different initialization techniques 

and ocean model parameters.  The most stable model version is the R30_c.  

Consequently, recent runs of the SRES simulations have been performed 

using only the R30_c model.   This fact makes the R30_c the preferred model 

among the GFDL line for secondary users (Delworth et al., 2002). 

 

The GFDL_R30_c model features an atmospheric resolution of 3.75° × 2.25° 

with 14 layers, and an oceanic resolution of 1.875° × 2.25° with 18 layers 

(Delworth et al., 2002).  In simulations using the SRES A2 and B2 forcing 

scenarios the GFDL_R30_c model generated 3.5° and 2.5°C mean annual 

temperature change over 100 years for the respective scenarios.  These results 

approximate the mean of the nine model ensembles and fall below the median 

temperature increase (IPCC 2001a).  In terms of precipitation increases, the 
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GFDL_R30_c model predictions consistently fall among the top three over the 

entire 100 year run of both scenarios (IPCC 2001a).  One trend worthy of 

noting is the wide fluctuations in precipitation changes demonstrated by the 

GFDL_R30_c model.  The 100 year trend displays greater variance in predicted 

annual precipitation changes than any of the other nine models considered 

here.  The GFDL_R30 model incorporate flux adjustments for both heat and 

water (Delworth and Knutson, 2000).  Land surface processes in the GFDL 

model are relatively simple.  Surface albedo is given as a set of constants for 

each grid cell and is variable as a function of snow depth.  Soil moisture 

content is represented with the “bucket” approach; the average global capacity 

for soil is given as 15 cm of water (Manabe et al., 1991). 

 

The data points used from the GFDL R30 model to represent the region 

surrounding the Seattle water supply basins are given in Table 2.8.  The 

values from these four points were averaged to represent the regional Pacific 

Northwest climate.  Historic data representative of the 20th century is taken 

from the gps01 model run featuring historic greenhouse gas and sulphate 

aerosol concentrations form the IS92a scenario. Future 21st century data is 

from the SRES A2 scenario model run. Data sets were acquired from the GFDL 

climate experiment archives (GFDL online resources), and the IPCC data 

distribution gateway online archives (IPCC DDC, online resources). 

 

Table 2.8 – GFDL_R30 Pacific Northwest Data Points 

Grid Cell index Latitude  
(decimal degrees) 

Longitude  
(decimal degrees) 

5920 48.0733 236.0000 
5921 48.0733 240.0000 
5824 45.8374 236.0000 
5825 45.8374 240.0000 

 

The values in Table 2.8 are shown on a regional map in Appendix B, map 5. 
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HadCM3 
The Hadley Centre for Climate Prediction began in 1990 and is a division of 

the United Kingdom’s National Meteorological Service.  Their mandates include 

study in global climate variability and change.  To this end the Hadley Centre 

has developed the HadCM series of General Circulation Models (Hadley Center 

2002). 

 

HadCM3 represents the most recent iteration of the HadCM GCMs.  The 

primary innovation distinguishing this version from its predecessors is the 

removal of any flux adjustment to prevent the drift of sea surface temperature 

away from realistic values (Gordon et al. 2000).  The resolution of the HadCM3 

model is 2.5° × 3.75° with 19 layers in the atmospheric component (Pope 

2000) and 1.25° × 1.25° with 20 layers for the oceanic component (Gordon 

2000).  The HadCM3 model produced a global average temperature change of 

approximately 4°C and 2.5°C for the 100 year SRES scenarios A2 and B2, 

respectively.  This was the fourth largest change of the nine models being 

compared.  The temperature change falls near to ensemble mean of the nine 

models.  The predicted change in precipitation is below the ensemble mean, 

falling sixth of the nine for both the A2 and B2 scenarios.  The modeled 

changes in precipitation over the next 100 years are an approximately 3% 

increase for both scenarios.    Land surface processes were significantly 

improved from HadCM2 to HadCM3.  The new scheme features 

representations of freezing and melting of soil moisture within four distinct 

layers.  Surface parameters are defined by 23 different categories of land 

cover.  Evapotranspiration is modeled as a function of vegetation type, 

temperature, vapor pressure, and ambient CO2 concentrations (Cox et al., 

1999). 

 

Currently the Hadley Centre is developing their next iteration climate model, 

designated HadCEM.  HadCEM is similar to HadCM3, but features a finer 

resolution of the ocean component (0.33° × 0.33°).  Initial control runs appear 
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promising; however, SRES scenario runs are not yet available, making a 

generalized comparison and availability to secondary users difficult. 

 

The data points used from the HadCM3 model to represent the region 

surrounding the Seattle water supply basins are given in Table 2.9.  The 

values from these two points are averaged to represent the regional Pacific 

Northwest climate.  Historic data representative of the 20th century is taken 

from the HC02GS01 model run, representative of all anthropogenic forcing 

over the historical period. Future, 21st century data is from the SRES A2 

scenario model run. Data sets were acquired from the IPCC data distribution 

gateway online archives (IPCC DDC, online resources) 

 

Table 2.9 – HadCM3 Pacific Northwest Data Points 

Grid Cell index Latitude  
(decimal degrees) 

Longitude  
(decimal degrees) 

1696 47.5000 236.0000 
1697 47.5000 240.0000 

 

The values in Table 2.7 are shown on a regional map in Appendix B, map 6. 

PCM 
The Department of Energy Parallel Climate Model (DOE PCM) is a joint 

development between the Los Alamos National Laboratory, the Naval 

Postgraduate School, the US Army Corps of Engineers' Cold Regions Research 

and Engineering Lab, and the National Center for Atmospheric Research with 

funding from the Unites States Department of Energy (NCAR 2002).  The PCM 

model uses the same atmospheric component as the CSM, coupled with 

different representations of the ocean, sea-ice, and land processes.  The 

present PCM uses resolutions of 2.8° × 2.8° with 18 layers and 0.67° × 0.67° 

with 32 layers for the atmosphere and the ocean components, respectively 

(Washington et al. 2000).  The resolution of the ocean component (the Parallel 

Ocean Program or POP) is distorted and actually increases to nearly 0.5° × 
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0.67° near the equator (Smith et al. 1995).  Given its similarity to the CSM, it 

is not surprising that the PCM tends to yield similar results in the A2 and B2 

scenarios presented in the TAR.  The PCM closely represents the ensemble 

mean value in terms of both temperature and precipitation change (IPCC 

2001a).  The PCM model does not incorporate any flux adjustments and uses 

the same land surface model as the CSM model described above (Washington 

et al. 2000). 

 

New developments and cooperation between the developers of the PCM and 

the CSM models are leading to a new generation of GCMs which will further 

blur the distinction between these two models.  The PCM-CST Transition 

Model (PCTM) and the Community Climate System Model (CCSM) represent 

the new model versions under development at NCAR. 

 

The data points used from the PCM1.3 model to represent the region 

surrounding the Seattle water supply basins are given in Table 2.10.  The 

values from these four points were averaged to represent the regional Pacific 

Northwest climate.  Historic data representative of the 20th century is taken 

from the IS92 “historic” run which used observed and IS92a forecasted 

greenhouse concentrations from 1960 to 1999.  Future, 21st century data is 

from the SRES A2 scenario model run. Data sets were acquired from the IPCC 

data distribution gateway online archives (IPCC DDC, online resources) and 

from the U.S. Global Climate Change Research Program, National Assessment 

page (USGCRP, online resources). 

Table 2.10 – PCM1.3 Pacific Northwest Data Points 

Grid Cell index Latitude  
(decimal degrees) 

Longitude  
(decimal degrees) 

6229 46.0447 236.0000 
6230 46.0447 239.0000 
6357 48.8352 236.0000 
6358 48.8352 239.0000 

 

The values in Table 2.10 are shown on a regional map in Appendix B, map 7. 
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Comparison of Local Performance with Downscaled GCMs 
In order to assess the effects the choice of GCM will have on a regional water 

resource impact analysis it is necessary to examine the performance of the 

GCMs at the local impact scale.  Using the quantile mapping downscaling 

process, seven GCMs were downscaled to daily station data for nine weather 

stations in the Puget Sound Region.  These stations serve as input for the 

DHSVM hydrology model described in a subsequent chapter.  The seven GCMs 

are compared by examining the long-term climate trends at the weather 

stations, and by examining the reproduction of streamflows in the South Fork 

Tolt and Cedar River basins. 

 

Downscaled Climate Trends 

 

Figure 2.5 – Temperature trend at Snoqualmie Falls as modeled by seven GCMs. 
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Patterns of temperature and precipitation at the station scale are described 

using the Snoqualmie Falls station as an example (Figure 2.5 and Figure 2.6).  

Additional station information can be found in Appendix C.  The trends in the 

climate variables are based on a series of successive iterations of the quantile 

mapping process that uses an expanded time series to encompass the 

observed range of natural variability.  The increased variability results in a 

greater number of points being averaged for each point on each GCM line, 

resulting in a smoother overall curve that better illustrates the gross trends in 

the GCM data and muting the inter-annual variability.  The climate trends are 

not intended to be indicative of any particular year, but are instead meant to 

show the progress of the average state from decade to decade.  Actual climate 

patterns will show a much greater range of year to year variability. 

 

Figure 2.6 – Precipitation trend at Snoqualmie Falls as modeled by seven GCMs. 



 37

 

 

The period of overlap from 1980 to 1990 shown in Figure 2.5 and Figure 2.6 

provides an opportunity for a qualitative evaluation of the GCM performance.  

In both the temperature and precipitation graphs, the CSIRO Mark2 model lies 

well outside of the range bracketed by the other models and the observed data 

sets.  The CSIRO model is therefore deemed less reliable than the remaining 

GCMs.  The spread in the remaining GCMs provides a qualitative feel for the 

uncertainty caused by variations amongst GCMs.  With the exception of the 

CSIRO model, all of the GCMs tested produce reasonable results at the station 

level; thus, while there is clearly some uncertainty to be noted at this level, it 

is not possible to distinguish any one or two models as superior to the others.   

 

Current and future streamflow  

We can use hydrologic simulation to integrate the finer details of the GCM 

scenarios into a larger scale metric more suitable for critical assessment.  It is 

necessary to use both the transient and steady-state approaches of the 

quantile mapping process in order to examine different aspects of the GCMs 

and the hydrologic analysis.  Two metrics will be presented here, one using 

each option: A quartile distribution for the average annual hydrograph for a 

steady-state examination of a designated decade and a transient, 10-year 

rolling average of total annual system inflows depicting the overall trend 

predicted by each GCM.  

 

Because the simulations of “present” climate conditions from each GCM are 

used as a basis for the downscaling process, it is not reasonable to examine 

the GCM output for a historic period as a part of this analysis.  Historic data 

serves as the training data for the downscaling process, and as such, is not 

appropriate for use in validation.  Due to the relatively short historic record of 

some GCMs, and the need to include as much historic period’s data as 

possible to build a robust downscaling method, we are forced to use a fairly 

unique approach for this testing of the GCM performance.  The “future” 
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climate scenario used in all seven GCMs being examined, SRES A2, starts in 

the year 1990.  This provides a small window of time in which the simulated 

“future” has already passed.  We shall exploit this window by examining the 

year 2000 conditions simulated by the GCMs.  This approach provides the 

benefit of allowing the use a new data set that is completely separate from the 

data used for the downscaling processes.  This prevents overlap between the 

downscaling calibration and the method validation.  Additionally, the 

validation data comes from the same scenarios and model runs that are used 

to examine future impacts, insuring that the climate mode data is internally 

consistent in terms of model biases. 

 

Simulated streamflows from the GCM runs are presented as average annual 

hydrographs with box and whisker lines that define the quartile distributions 

at each week in the year.  This display method contains a great deal of 

information about the overall hydrologic simulation.  Figure 2.7 shows the 

quartile distributed hydrograph from the Year 2000 conditions as simulated 

by the HadCM3 model.  The raw GCM data is downscaled using the quantile 

mapping method with an expanded time series; subsequent streamflows are 

simulated using DHSVM.  The GCM based Year 2000 distribution is compared 

to two different baselines, the historic average conditions from 1990-2002 and 

the historic average conditions from 1929-2002. Both historic conditions are 

created as simulated streamflows based on observed daily weather data.  The 

purpose of comparing the GCM simulated Year 2000 streamflows to two 

different baselines is so that we may compare different characteristics of the 

quartile distribution with their proper analogues.  The mean of the Year 2000 

GCM hydrograph should correspond with the average conditions from the 

same period.  Ideally this would be compared to historic 1990-2010 

streamflows, but it is not possible at this time. The box and whiskers of the 

quartile distribution indicate the range of variability within the downscaled 

GCM simulation.  Since the goal is to contain as much observed variability as 

possible, we compare the position of the 25th and 75th percentile flows (the 
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boxes) and the maximum and minimum flows (the whiskers) to the historic 

1929-2002 record. 

 

 

Figure 2.7 – Quartile distribution plot of the average annual hydrograph for the 
inflows to the South Fork Tolt Reservoir.  The colored bars and lines represent 
the GCM based simulation for the year 2000 conditions, the red line is the 
historic 1990-2002 observed average, and the gray bars represent the quartile 
distribution (the variance) of the full historic record from 1929-2002. 

  

A qualitative examination of Figure 2.7 reveals the following information about 

the quality of the downscaled, HadCM3, year 2000 simulation.  Through the 

majority of the year, the average streamflows are below the target historic 

1990-2002 averages; this is likely caused by the fact that the HadCM3 model 

is among the lowest in terms of simulated precipitation during the 2000 

decade (see Snoqualmie Falls and Startup precipitation trend plots in 

Appendix C).  The maximum values in the HadCM3_2000 simulation match 
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well during the winter and spring months, but are low in the summer; 

however, the minimum values track very well during the critical summer 

months. 

 

A qualitative examination of all seven GCMs in this manner is informative, but 

provides little in way of a quantified basis for evaluation. The hydrographs for 

all seven GCMS can be found in Appendix E.  The average values for all seven 

GCMs are shown in Figure 2.8.  In order to quantify the ability of the GCM 

simulations to match the historic ranges, the values at each of the 52 weeks 

are compared for each of the five points in the distribution; the root mean 

square error across the 52 weeks at each quartile is then calculated.  The 

results for all seven GCMs are tabulated in Table 2.11  

 

Using either the total error at all quartiles or the average error, the GFDL 

model shows the best match to the historic conditions for the year 2000 

simulations with the ECHAM4 model being a close second.  The HadCM3 and 

PCM models are in a second middle group, while the CGCM2, CSIRO, and 

CSM models are grouped as the poorest performers.   

 

The transient time series produced by the GCMs can be used to evaluate the 

direction or nature of the longer term patterns affecting the steady-state 

representations used for system evaluation.  A 21 year rolling average of total 

annual system inflows from the combination of historic and future GCM runs 

is used to depict the overall trend predicted by each GCM.  While is it 

impossible to assess the accuracy of these future values, they do provide a 

qualitative assessment of the extent of the agreement between GCMs.  The 

presence of outliers amongst an otherwise close grouping provides justification 

for the subjective decision of which GCMs deserve greater confidence and 

which do not.   
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Figure 2.8 – Average annual hydrographs from 7 GCMs showing inflows to the 
South Fork Tolt Reservoir. 

 
Table 2.11 – Root Mean Square Error of GCM simulated Year 2000 conditions 
compared to the historic1990-2002 and historic 1929-2002 simulations 

RMSE MIN 25thP MEAN 75thP MAX Total Average
CGCM2 462.9 418.4 553.8 655.2 1703.5 3793.8 758.8 
CSIROMK2 163.0 457.4 691.4 787.8 1845.9 3945.5 789.1 
CSM1.3 348.2 423.7 506.0 727.3 1519.2 3524.4 704.9 
ECHAM4 194.5 146.1 254.0 241.2 1214.7 2050.4 410.1 
GFDL_R30 221.5 212.7 118.0 302.7 919.8 1774.8 355.0 
HadCM3 309.5 238.8 348.8 451.3 1428.7 2777.1 555.4 
PCM1.1 372.3 360.4 366.6 450.3 1266.3 2815.9 563.2 

 

The most prominent feature shown in Figure 2.9 is dramatically lower values 

produced by the CSIRO model; this observation gives justification for 

allocating a lower degree of confidence in the results of systems evaluations 

using the CSIRO based streamflows.  The ECHAM3 and HadCM3 models show 
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the next lowest future values and have a generally downward trend.  The 

CGCM2, PCM, and GFDL models have a roughly constant trend, while the 

CSM model shows in long-term increase in total annual flows.  It is worth 

noting again that these values represent total annual inflow without regard to 

timing within the annual cycle.  This metric is useful for comparing results 

between models.  For example, we can see the ECHAM4 model produces an 

overall dryer climate than the GFDL30 model; therefore, we would expect the 

systems evaluation to follow a similar pattern. 

 

Trends in Annual Total Inflow to South Fork Tolt Reservoir
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Figure 2.9 – A rolling 21 year average (centered on plotting date) of total annual 
inflows to the South Fork Tolt Reservoir.  This metric integrates the climate 
signals into decadal scale variability and its impacts on streamflow.  

 

Uncertainty in GCM Climate Representation 
The level of uncertainty in GCM outputs cannot be determined quantitatively 

and is essentially unknown; however, by using the range of predictions 
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available from all current generation GCMs, it is possible to determine a lower 

bound to the uncertainty (Wood et al., 1997). 

 

Using the downscaled data from the seven GCMs, it is possible to assess a 

lower bound on the uncertainty associated with using GCMs to evaluation a 

specific system.  Since the GCMs do not produce time sequences intended to 

be analogous with any observed time series, it is not possible to directly 

compare modeled to observed results.  Using a hydrologic model to integrate 

the downscaled climate patterns into a single dependant variable, i.e. 

streamflow, we can compare the frequency distributions of the streamflow 

produced by observed climate with that produced by GCM simulated climate.  

From this comparison a quantified estimate of the range of error expected from 

using GCMs is produced.  The root mean square errors of the seven GCMs for 

year 2000 conditions (Table 2.11) are averaged across all quartiles to produce 

a GCM error term.  Comparing this GCM average error to the historic average 

flow across all weeks at each quartile produces a term for the error as a 

percentage of the observed flows (Table 2.12).  The greatest relative error 

occurs at lower flows, with the absolute error increasing proportional to the 

square of the average observed values.  The average error across the quartile 

distribution is approximately 22% of the average flow at each quartile.  This is 

comparable to the level of uncertainty observed in the downscaling step. 

Table 2.12 – Seven-GCM average error when reproducing year 2000 flows for the 
South Fork Tolt reservoir. 

MIN 25thP MEAN 75thP MAX 
Average RMSE of 7 GCMs 296.0 322.5 405.5 516.6 1414.0
Annual average of 
observed flows at the  
Specified quartile 

822.5 1914.3 2674.6 3113.4 5249.1

RMSE as percentage of  
average annual observed 

0.36 0.17 0.15 0.17 0.27
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Conclusions on GCMs 
The uncertainty created when predicting climate using GCMs is not 

insignificant.  Improvements continue to be made in the modeling of global 

climate and the current generation of GCMs is capable of producing credible 

representations of both historic and future climate.  The greatest uncertainty 

when predicting future climate lies in the assumptions that must be made 

with regard to social and economic development.  It is human development 

that will drive the emissions of greenhouse gasses and, consequently, the 

evolution of climate over the coming decades.  Even in the face of such 

uncertainty, climate models do provide a valuable tool for the prediction of 

climate, and the associate impacts of climate change.  GCM simulations 

cannot be used as one would use a weather forecast, but they can provide 

valuable insight to the range of potential climate change, and allow for the 

assessment of impacts using realistic patterns of altered climate.   

 

Of the GCMs evaluated in this research, no single model stands out as 

superior to the others; however we have been able to separate the GCMs into 

classes of similar future climate patterns.  By classing the GCMs it is 

reasonable to proceed with an impact assessment using a smaller set of GCMs 

while still maintaining the full range of potential impacts.  Two metrics that 

examined the GCMs performance at the local scale were explored.  Using a 

steady-state representation of climate to reproduce year 2000 conditions 

revealed the GFDL and ECHAM4 models to be best at reproducing the desired 

characteristics of the streamflow hydrographs.  The HadCM3 and PCM models 

also performed reasonably well in this category.  Looking at the longer term 

trends and how they affect annual total streamflows revealed a broad range of 

potential climate change impacts.  The two GCMs that most often define the 

extremes of the range seen in Figure 2.9, CSM and CSIRO, performed poorly 

in the year 2000 metrics.  Additionally, the CSIRO model does not reproduce 
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the current climate at the station scale well (See Appendix C).  If we disregard 

the CSM and CSIRO models, the next nearest extremes of the long-term 

impacts seen in Figure 2.9 are captured by the GFDL30 and ECHAM4 models.  

The range in between these extremes is filled in by the HadCM3, PCM, and 

CGCM2 models.  Because the CGCM2 model did not perform exceptionally 

well in the year 2000 evaluation, and it falls in the middle of the pack in terms 

of the long-term potential impacts, it can be safely disregarded for system 

impact analysis.  The range of potential climate change impacts to the Seattle 

water supply system can be captured by examining the downscaled output of 

four GCMs: GFDL30, ECHAM4, HadCM3, and PCM. 
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3 Downscaling 
 

The use of General Circulation Models to predict climate change impacts at a 

regional level requires that the global scale data must be translated to a scale 

that is more appropriate for analysis at the local or regional scale.  GCMs 

operate at relatively coarse scales that do not include details that affect local 

weather patterns at the local scale.  Orographic features, such as mountains; 

other thermodynamically influential features, including large lakes or 

variations in vegetation; and distant climate anomalies, such as El Niño; can 

significantly affect local weather patterns, yet are not represented by the 

current global scale models.  GCMs are effective in reproducing global scale 

climactic variables; however, research has shown the reproduction of daily 

precipitation values and historic trends are not reproduced well (Mearns et al., 

1994).  Using GCM climate predictions to assess regional changes requires 

results to be converted to a local scale that preserves the trends present in the 

GCM data, but that also reproduces smaller scale weather phenomenon. 

 

The scale of circulation and weather patterns is defined by the area over which 

these patterns occur.  Global (or planetary) scale refers to patterns which 

cover an area greater than 107 km2 (~3.86 million mi2); regional (sub-

continental) scale covers from 107 km2 down to 104 km2 (3860 mi2); local scale 

patterns are on the scale of less than 104 km2 (IPCC, 2001).  Converting global 

data sets into meaningful regional and local information is generically referred 

to as downscaling, and can be accomplished by way of two main classes of 

methods: Regional Climate Models (RCM) and statistical downscaling methods. 

 

This chapter describes the development and validation of a statistical 

downscaling method based on the relationships between the cumulative 

distribution functions of climate variables at both the regional and local 

scales.  By exploiting this relationship, global and regional scale climate data 
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derived from GCM simulations are downscaled to local station points and used 

for hydrologic simulations that evaluate water resource climate change 

impacts. 

Why Downscaling is Necessary 
The main goal of a downscaling method is to accurately reproduce the local 

phenomenon and statistics that are associated with the larger scale state.  

Meteorological downscaling describes a method for generating local scale 

climate data using regional scale information, such as that generated by a 

GCM or other climate prediction model.    The product is a time series of 

weather data for a local scale station that corresponds to the regional or global 

time series produced by a climate model, yet also contains features unique to 

the station location not present in the regional signal.  These local features are 

defined by the observed record at each station. Many different methods have 

been documented for performing downscaling operations (Wilby and Wigley, 

1997; Widdmann et al. 2001; Wilby et al, 1998; Charles et al. ,1998; Leung 

and Ghan, 1999).  A common feature of these approaches is that they yield a 

transient view of the climate state, a single realization of the many possible 

variations that could have occurred.  When using climate data for water 

resource planning, it is necessary to incorporate methods that allow for the 

estimation of the entire range of potential variability that might occur within a 

time period.  Therefore, this research develops a downscaling methodology 

that captures the regional signal described by the climate models, contains 

local scale phenomenon and patterns as defined by the observed history at a 

station, and expands the time series to include the entire possible range of 

variability. 

 

Spatial Versus Temporal Downscaling 
Downscaling GCM data for use in a rainfall-runoff hydrology model 

incorporates two distinct processes; spatial downscaling and temporal 
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downscaling.  GCM output is archived as gridded, monthly average values. 

Each grid cell covers an area of several degrees square; the average of several 

neighboring grid cell values can be considered a measure of a regional scale 

value.  Spatial downscaling refers to a process that disaggregates a single 

regional scale time series into multiple local scale time series, thereby 

increasing the spatial resolution of the information.  Temporal downscaling is 

the process of converting the monthly time series into daily or even hourly 

values, increasing the resolution of the data by using smaller time steps.  The 

two downscaling processes are essentially independent, making it possible to 

mix and match different approaches. 

 

Transient Versus Steady-State Climate Representations 
Climate is defined as the average condition of the weather of a period of time.  

This assumes that the climate state being defined is stationary, that is, the 

long-term average does not change over time.  Analysis of observed records, 

however, shows that long-term averages do change, and can be influenced by 

the selection of the averaging period.  The principal assumption behind 

climate change research is that anthropogenic forces have caused shifts to 

climate.  Climate change impact studies must consider climate at a given point 

in time, for example, how will climate change affect our water supply by the 

year 2020? However, the range of natural variability is often greater than the 

magnitude of change expected over several decades.  Figure 3.1 and Figure 3.2 

demonstrate this phenomenon using 100 years of simulated climate from the 

HadCM3 climate model.   
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100 year HadCM3 Simulation of March Temperature in the 
Pacific Northwest
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Figure 3.1 – March temperatures in the Pacific Northwest as simulated by the 
Hadley Center’s HadCM3 climate model.  The bold line represents a rolling 21 
year average to demonstrate how a series of steady-state averages can be used to 
closely approximate the long-term trend of the transient time series. 

 

Figure 3.1 contains the average temperature for March from 1950 to 2050 for 

the Puget Sound Region as simulated by the HadCM3 climate model.  An 

estimate of the steady-state climate for March temperatures is computed as 

the average of 10 years on either side of the year in question, e.g. the 1960 

March temperature value is the average of March temperatures from 1950 to 

1970.  The slope of the 21 year rolling average very closely approximates that 

of a trendline fitted to the yearly data.  Both of these lines demonstrate a 

warming trend of approximately 0.1°C per decade.  Using the 21 year rolling 

average as a series of approximation of steady-state conditions, we can 

calculate the amount of warming in any year using the origin, 1960, as base 

reference.  This warming trend is shown as the lower line in Figure 3.2.  The 

upper line in Figure 3.2 shows the natural variability seen within the same 

period as measured by the standard deviation of the 21 values.  The standard 

deviation is at all times higher than the magnitude of change, even after 80 
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years.  This implies that at any point in time, the magnitude of those solely 

attributed to climate change will be less than those that can be expected from 

year to year from natural variability.  This is not to imply that climate change 

impacts are insignificant, but to make clear the importance of including the 

full range of potential variability in any estimate of future climate for a 

specified period.   

Rate of change and natural varibility within HadCM3 100 
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Figure 3.2 – Rate of climate change versus magnitude of natural variability.   

 

Using a steady-state approach to estimate climate conditions, such as the 21 

year average, it is likely that some amount of potential variability will be 

excluded.  Similarly, if a transient approach is used (examining the entire time 

series), it becomes difficult to assess the potential impacts of climate change at 

a point in time, because each simulation is only a single realization of the 

infinite number of possible combinations of events.  There are potential pitfalls 

in using either a steady-state or a transient representation of climate to 

evaluate climate change impacts. The downscaling methods explored in the 

remainder of this chapter attempt to minimize the effects of these problems. 
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Data Sources 
The downscaling processes applied in this research use a variety of climate 

data sets (Table 3.1). 

Table 3.1 – Climate data used in downscaling experiments and future hydrologic 
simulations. 

Regional Data 
 Data Set Reference 
IRI-UEA TEMP:  Jones-Moberg Gridded 
Temperature Anomalies and monthly Means 

Jones et al. 1999 
Jones and Moberg 
2003 

IRI- UEA PRCP: Hulme CRU global gridded 
precipitation dataset 

Hulme 1992, 1994 

Local Data   (NCDC, 2003) 
Station Name NCDC Coop# Location  Period of Record 
Buckley 450945 47°10’10”N   

122°0’12”W 
1915 – present 

Cedar Lake 451233 45°24’46”N 
121°45’23”W 

1915 – present 

Kent 454169 45°25’2”N 
122°14’36”W 

1915 – present 

Landsburg 454486 45°22’35”N 
121°59’39”W 

1915 – present 

Palmer  456295 47°17 ‘1”N 
121°51’5”W 

1925 – present 

Sea-Tac 457473 47°26’40”N 
122°18’50”W 

1948 – present 

Snoqualmie 
Falls 

457773 47°32’33”N 
121°50’11”W 

1915 – present 

Stampede 
Pass 

458009 47°17’36”N 
121°20’14”W 

1944 – present 

Startup 458034 47°51’59”N 
121°43’3”W 

1924 – present 

 

Different statistical downscaling methods incorporate a varying amount of 

information from different sources.  The two principal data sources used in the 

downscaling methods discussed here are GCM output and historical, 

meteorological monitoring station records.  Any climate record, regardless of 

its scale has two important features: the data’s distributions and the data’s 
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time series.  The data’s distribution can be characterized by monthly 

cumulative probability distribution functions (CDF).  The data’s time series is 

a description of the sequence in which the CDF values occur.  For example, 

historic February precipitation in the Western Washington region is described 

by the IRI regional climate data set (Hulme 1992,1994).  Considering the years 

from 1900 to 1990, the cumulative distribution function is determined using 

an approximately quantile, unbiased plotting position estimator of the form  

 

an
aiqi 21−+

−
=

 
 

where a = 0.4 for unknown distributions (Cunnane, 1978).  The CDF describes 

the statistical properties for the variable for a specific month (Figure 3.3). 

 

The data set’s time series is shown in Figure 3.4.  These two properties are 

clearly related, but can be utilized in the downscaling process as separate 

features.  Combining three data sources to be used for downscaling (GCMs, 

regional estimators, and observed station data) with the two characteristics 

present in each source yields a total of six climate descriptors that are 

combined during the downscaling process. 
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Western Washington February Precipitation
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Figure 3.3 – Probabilities of not exceeding the given total precipitation in any 
February for Western Washington.  For example there is a 10% chance of having 
10cm or less total precipitation in February of any year. Derived from IRI-CRU 
global precipitation dataset (Hulme 1992, 1994) 
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Figure 3.4 – Time series of February precipitation magnitudes for Western 
Washington.  Derived from IRI-CRU global precipitation dataset (Hulme 1992, 
1994) 
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The relative importance of each data source and the climate descriptors 

incorporated varies by method.  The range of possible methods considered for 

this research and the relative importance of each data source are described 

graphically in Figure 3.5.  At one extreme is the use of direct GCM output.  

This approach is generally not feasible, particularly when assessing water 

resource impacts to small and medium sized municipal watersheds due to 

issues of scale with both the temporal and spatial resolution.   At the other 

extreme is the use of arbitrarily perturbed historic data.  This approach is 

valuable for assessing the vulnerability of a water supply system to climate 

change (Kirshen and Fennessey 1995; Blake et al. 2000), but provides little 

insight into the likelihood of climate change, providing only threshold 

sensitivity for the system.  Between the two extremes are the approaches 

evaluated in this project.  The methods incorporate information from both 

ends of the spectrum to use only the most significant aspects of each data 

source. 
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Figure 3.5 – Variations among statistical downscaling methods with regards to 
the relative importance and degree of incorporation of different data sources.  
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In order of decreasing dependence on observed historic records, the methods 

examined in this research are: 

1) Changes in temperature and precipitation calculated from GCM, 

variable distributions and time series from historic station data (the 

Delta Method). 

2) GCM based temperature and precipitation distributions, regional 

observed time series, spatially and temporally rescaled with historic 

station data (Quantile Mapping with observed time series). 

3) GCM time series and temperature/precipitation distributions, 

spatially and temporally rescaled with historic station data (Quantile 

Mapping with GCM time series). 

 

The specifics of each of these processes are described in greater detail late in 

this chapter. 

 

The Delta Method 
The Delta method has become a very common methodology for downscaling 

global scale climate modes for use in water resource impact assessments.  The 

methodology was formalized for use in climate impact studies in the 1989 

report from the U.S. Environmental Protection Agency (Smith and Tirpak, 

1989) and has been used for impact analysis on a wide range on sites 

(Lettenmaier and Gan, 1990; Kirshen and Fennessey, 1995; Lettenmaier at al., 

1999; Loáiciga et al. 2000; Palmer and Hahn, 2002). 

 

The delta method captures climatic shifts from the GCM simulations, but 

relies entirely on the historic record to represent both the event frequency and 

the variability of the climate variables.  In this approach, the climate shift 

present in the GCM signal is defined as the difference between a historic base 

climate state and a future climate state.  The implementation of the delta 

method in this research uses a base climate state that is defined by the 
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monthly average temperature and average monthly precipitation accumulation 

between the years of 1933 and 1953.  This range of years was selected to 

minimize potential biases caused by a single prevailing North Pacific Ocean 

temperature state as measured by the PDO index (Mantua et al. 1997).  The 

period of 1933 to 1953 contains a shift from a warm to a cool state of the PDO 

(approximately 1947), and therefore is representative of a wide range of 

natural climate variability. 

 

The “future” climate, in this case the year 1980, is defined by the 21 year 

period surrounding the target year (1970-1990).  The difference in 

temperature between the future and historic average monthly temperatures 

and the ratio of future versus historic average monthly precipitation define the 

“deltas”, scalar values which define the shift in climate between the two 

periods.  The monthly deltas values are used to alter the historic record for the 

three meteorological stations used to drive the hydrology model.   

 

historic
historicGCM

futureGCM
future P

P
P
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,
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Quantile Mapping  
Quantile mapping is a statistical downscaling method developed to extend the 

delta method in a manner that better captures the potential variability of 

future climate changes.  The method is based on a bias correction scheme for 

downscaling climate model output described by Wood et al., (2001).   The 

traditional delta method applies a constant delta factor to all events within a 

season for which the factor is calculated. The delta method approach assumes 

that changes in long-term averages can be applied uniformly to all events; For 

example an average shift of +0.5 degrees in January temperatures is applied 

by raising every January temperature by the same 0.5 degrees.  The quantile 

mapping approach assumes that shifts in climate variables will manifest with 
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different magnitudes at different points in the variable’s distribution.  

Consider again January temperature at Snoqualmie Falls; Figure 3.6 shows 

the January temperatures observed over a 57 year period from 1942-1970. A 

nine year running average is used to smooth the series and a trendline is fitted 

to the smoothed curve.  The trendline describes a roughly 0.5 degree increase 

in temperature per decade. 

 

Average January Temperature at Snoqualmie Falls
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Figure 3.6 – Average January temperature at the Snoqualmie Falls COOP station 
for 1942 through 1998.  

 

If the origin of this data had been a GCM with the first half of the time series 

representing a “historic” period and the second half representing the “future” 

period, the change in January temperatures can be describe using the delta 

method.  Splitting the set into halves, averaging each half and taking the 

difference yields a delta value of plus 1.14 degrees Celsius ( Tavg1970-1998 - 

Tavg1942-1970 = 1.14 ).  A more careful examination indicates that the change in 

temperature does not occur as a uniform 1.14 degree shift.  Plotting the 
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cumulative distribution functions of each subset (Figure 3.7) demonstrates the 

shift in temperature to be considerably more pronounces at the lower end of 

the distribution with the coldest years shifting upward by greater than 5 

degrees while the warmest years increase by only 0.47 degrees Celsius.  The 

average of the difference at each point in the distributions shown in Figure 3.7 

also equal 1.14 degrees. 

January Temperature Distribution for Snoqualmie Falls
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Figure 3.7 – Cumulative distribution functions for successive subsets of January 
temperature data at Snoqualmie Falls COOP station.   Plotting positions are 
calculated using the Cunnane approximately unbiased estimator for unknown 
distributions described previously. 

 

The phenomenon described in the example of January temperature at 

Snoqualmie Falls is not unique, and can be demonstrated for both 

temperature and precipitation at a variety of weather stations using any 

combination of “historic” versus “future” time periods.  This observation serves 

as the primary justification of the quantile mapping process.  Quantile 

mapping can be described as a modified delta method, in which the delta 

values are apportioned unequally across the distribution.  A transfer function 
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relationship is calculated for multiple intervals along the CDF rather than a 

single, long-term average value. 

 

The quantile mapping method is implemented in three stages: development of 

quantile relationships, spatial downscaling, and temporal downscaling. This 

requires three distinct data sets: historic station data, GCM simulations of an 

historic periods corresponding with the observed station data, and GCM based 

future climate simulations.  The first stage uses the historic observed data and 

the “historic” period GCM simulations to define relationships between GCM 

scale and local scale climate variables.  These relationships are defined on a 

monthly time step for both temperature and precipitation resulting in 24 

quantile maps for each final downscaled station.   

 

Figure 3.8 illustrates a single quantile map which defines the relationship 

between January temperatures at Snoqualmie Falls to the historic regional 

representation of January temperature from the ECHAM4 climate model.  This 

figure not only demonstrates how the downscaling relationships are derived, 

but also illustrates why the downscaling is necessary for each station 

individually.  It is clear from the difference seen in the distributions shown in 

Figure 3.8 that the regional values for climate taken directly from a GCM are 

not representative of climate at the individual stations.  

 

The second stage of the process maps each value from the future climate 

scenario through the relationships defined in stage one to derive a monthly 

time series based on the future GCM scenario, but modified for the 

appropriate individual stations.  For example, if the future climate scenario 

that is being downscaled has an average January temperature of 1.5° C for 

January 2010, that value is located on the January temperature quantile 

map, and the station value that corresponds to the same non-exceedance 

probability is calculated.  This process is shown graphically in Figure 3.9, 

resulting in an output value of 3.6°C for the average January temperature at 
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Snoqualmie Falls in January 2010.  The process is then repeated for the 

subsequent months and for additional stations until the entire regional future 

scenario has been converted into multiple future station scenarios.   
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Figure 3.8 – Quantile map relating January temperature at Snoqualmie Falls to 
the historic regional representation of January temperature from the ECHAM4 
climate model. 

 

The third stage of the downscaling process is the conversion of the monthly 

future station scenarios into daily scenarios.  The temporal downscaling 

utilizes observed historic daily sequences for each downscaled station.  First, 

an appropriate month from the historic record is selected. The differences 

between the monthly temperature and precipitation from the downscaled time 

series and the selected month are then computed in the same manner as the 

traditional delta method.  The delta factors are then applied to the selected 

month resulting in a daily time series for each station that has the monthly 

average values of the downscaled future time series.  Methods for selecting the 

appropriate month to be used from temporal downscaling are discussed in the 

following sections.  A graphic representation of the complete downscaling 

process, along with sample calculations, can be found in Appendix A. 



 61

 

-8

-6

-4

-2

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Non-Exceedence Probability

Ja
nu

ar
y 

TE
M

P
Snoqualmie 1940-1990

ECHAM4-GShist 1940-1990

 
Figure 3.9 – Graphical representation of the GCM to station value lookup process 
for a single future value. 

 

Variations Within the Quantile Mapping Method 
Several options are available during the quantile mapping process that can 

affect both the structure and value of the final process output.  The structure 

of the output refers specifically to the length of the output time series and 

whether it is based on a transient or steady-state representation of climate.  

These options occur during the first state of downscaling, the time series 

development.  Options within the temporal downscaling stage, specifically the 

month selection process, can affect the final daily output values of the 

downscaling process.  Figure 3.10 illustrates the relationship of the different 

processing options.   
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Figure 3.10 – Decision tree of options explored with in the Quantile Mapping downscaling 
process. 

 

Time series development 

Using climate models to forecast impacts to water resources presents an 

unusual challenge with regards to the manner in which the climate of a region 

is represented.  As stated in previous sections, the rate of change seen in most 

climate models is significantly less than the magnitude of the natural 

variability that can be expected to occur from year to year.  When looking at 

transient or steady-state representations of climate, it is important to assess 

whether or not the variability present in the data set is sufficient to represent 

the full range of potential variability that may actually occur.  If we use a 

range of years to identify a given year of interest and use that range to 

describe the average climate of a period (e.g. 1970-1990 to represent 1980 

climate), as is often done in climate impact studies (Lettenmaier at al., 1999; 

Palmer and Hahn, 2002), the variability present within the range is often less 
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than the full range that has been observed in the past.  The range of variability 

seen in temperature and precipitation from a complete weather record and a 

21 year subset of that record are shown in Figure 3.12.  Extreme events are 

the defining events when describing the sustainability of a water resource; 

therefore, it is very important to include these events in any representation of 

potential future climate.  The full range of variability, as measured by the 

width of the whiskers in Figure 3.12 and Figure 3.12, is less for the 1970-

1990 subset in nearly every month of the year.   

 

 
Figure 3.11 – Box and whisker plots showing the minimum, 25th percentile, 
average, 75th percentile and maximum temperature values for two different 
subsets of the IRI regional climate data. The red bars represent 1928-2002, the 
blue bars represent 1970-1990. 
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Figure 3.12 – Box and whisker plots showing the minimum, 25th percentile, 
average, 75th percentile and maximum precipitation values for two different 
subsets of the IRI regional climate data. The red bars represent 1928-2002, the 
blue bars represent 1970-1990. 

 

To address a truncated range of variability when using subsets of climate 

data, it is necessary to incorporate into the downscaling process a step that 

expands the climate time series so that it includes the full range of observed, 

historic variability.  This process (noted as option “b” in Figure 3.10) uses a 

quantile relationship similar to the quantile mapping process to combine the 

climate variable distributions derived from one data subset with time series of 

events from a different subset.  This allows us to use a shorter period to define 

the climate state yet maintain the variability of the full historic record.  The 

process for creating an expanded time series is as follows:   

1. A 21 year subset of GCM output is selected to represent a steady-

state approximation of future climate, e.g. 2010-2030 represent the 

climate of 2020. 
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2. The cumulative distribution functions of temperature and 

precipitation are calculated for each of the 12 months. 

3. A complete historic record of observed regional climate is obtained 

and the equivalent monthly cdfs are also calculated. 

4. The cdfs from the two data sets for each month and variable (e.g. 

January precipitation or March temperature) are plotted together to 

form a quantile map.   

5. Each value in the historic time series is then related to a 

corresponding value from the GCM based distribution, resulting in a 

time series of events identical to the original observed data set, but 

with the cdfs of the GCM based distribution. 

 

This process allows for a climate change signal to be captured from the GCM 

by way of the shifts in the climate variable cdfs, while also allowing for a 

longer time series that contains all of the extreme events in the observed 

record.  The magnitude of these events is shifted to correspond with the 

altered climate signal from the GCM.  Additional description of the 

mechanisms of this process and examples of intermediary products are given 

in Appendix A. 

 

Temporal downscaling month selection 

The quantile mapping process produces spatially downscaled values at a 

monthly time step.  Most hydrologic models used for water resource analysis 

require a shorter time step; therefore, it is necessary to further disaggregate 

the climate data into a time step suitable for use in a hydrology model.  The 

hydrology model used in the later stage of this study requires daily values of 

maximum and minimum temperature and precipitation.  The process 

employed to disaggregate the monthly values down to a daily time step is 

relatively simple, being based on the delta method premise that historic 

climate patterns are the best available analogue of future climate patterns.   
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The process of temporal downscaling is essentially a month by month 

application of the delta method:  The monthly downscaled values for the 

future climate at a station location is calculated, an appropriate month from 

the historic record is selected, the historic month is then altered so the 

monthly average temperature and the total monthly precipitation is the same 

as that of the future time series.  This process is repeated for every month of 

the future climate time series.   

 

The method for selecting an appropriate month from the historic record has a 

noticeable effect on the final output of the process, even though the monthly 

statistics of the final records are identical.  Three different options for selecting 

the month used in temporal downscaling are explored.  The first is contingent 

upon the use of the expanded time series development described in the 

previous section.  If this process is employed, the expanded time series created 

previously will be directly related to the observed regional climate record.  The 

first approach is to simply use the same observed time series in the same 

orders to perform temporal downscaling.  This approach is hereafter referred 

to as scenario matching.  The other two options involve selecting a month from 

the historic record that most closely matches one of the two climate variables 

being considered.  By selecting the closet match to the future values, the goal 

is to minimize the magnitude of the perturbation or delta values.  By 

minimizing the deltas there is a decreased change of creating physically 

implausibly scenarios.  For example if a future climate month required a large 

amount on precipitation, and a month with only one or two precipitation 

events were selected, then those events would have to be made unreasonably 

large so that the monthly totals are preserved.  The two options for variable 

matching are referred to as the best match precipitation and the best match 

temperature approaches.   
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The five downscaling options being explored are listed in Table 3.2 along with 

the shorthand notation that will be used to categorize runs which incorporate 

that method. 

 

Table 3.2 – Downscaling options examined  

Downscaling Option  Notation 
Delta Method Ddm 
Quantile mapping with GCM time series Dqgt 
Quantile mapping with historic time series Dqc 
 Temporal scaling with scenario match Dqcs 
 Temporal scaling with best match precipitation Dqcp 
 Temporal scaling with best match temperature Dqct 

 

Evaluation Methods and Metrics 
Evaluating downscaling methods that are designed for assessment of future 

climate change presents a unique challenge.  Comparison to future climate 

states is clearly not possible, so instead we must implement the downscaling 

over a period of the historic record.  However, frequently these methods are 

designed to reproduce the full range of natural climate variability, so the 

results of downscaling for a particular decade often will contain climate events 

that exceed the range of events seen in the historic observations for that 

decade.  Therefore, it is important to define the metrics that will be used for 

evaluation.   

 

To evaluate the downscaling methods free of any potential bias present in a 

GCM data set, a gridded global dataset based on observation rather than 

climate simulation models is used.  The International Research Institute’s 

Climate Prediction Unit (IRI-CRU) has produced a gridded, monthly, 

2.5°×3.75°, precipitation dataset (Hulme 1992,1994), and a 5°×5° gridded, 

monthly temperature data set (Jones and Moberg 2003).  Both data sets are 

interpolated from station observations.  Together these two data sets, referred 

to hereafter as the IRI climate data, are used as a proxy for a “perfect GCM.”  
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The IRI data represent actual climatic conditions and variability as they have 

occurred, but are represented at large grid resolutions without local detail, 

similar to a GCM dataset.  The location of the IRI grid cells used is shown in 

Figure 3.13. 

 

 
Figure 3.13 – Location of grid centers for IRI data points.  The star (    ) indicates 
a point that is used to represent the regional climate conditions for Western 
Washington.  The temperature data is shown in the left map and the 
precipitation data is on the right. 

 

The goal of the downscaling methods being examined is to allow the 

translation of large scale climate data to smaller spatial and temporal scales in 

a manner that preserves the long-term trends and patterns of the original data 

set, while also incorporating and preserving the unique characteristics seen at 

the local scale.  To evaluate the performance of the methods, 17 meteorological 

metrics and 6 hydrologic metrics are used.   

 

The meteorological metrics are initially examined for a single weather station 

in the Puget Sound Region.  The Snoqualmie Falls station (National Climatic 

Data Center COOP # 457773, see Figure 4.3) has maintained a nearly 

complete record of daily temperature and precipitation from 1931 to the 
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present.  The Snoqualmie Falls station is also centrally located between the 

two municipal watersheds that are the subject of the subsequent hydrologic 

examination.  

 
The downscaled daily weather sequences are examined to assess the ability of 

the downscaling methods to reproduce certain statistical measures of the daily 

weather patterns.  Metrics used to examine precipitation patterns are taken 

from Wilby et al. (1998).  These metrics are: 

• Mean wet day amount (mm) 
• Standard deviation of wet day amount (mm) 
• 95th percentile wet day amount 
• Wet day probability 
• Dry day probability 
• Probability of a dry day, conditional on the previous day being dry 
• Probability of a wet day, conditional on the previous day being wet 
• Mean length of wet spell (days) 
• Mean length of dry spell (days) 
• Standard deviation of wet spell length (days) 
• Standard deviation of dry spell length (days) 
• Mean monthly minimum temperature 
• Mean monthly maximum temperature 
• Total monthly precipitation 

 

The daily weather sequences are examined for the Snoqualmie Falls weather 

station using the statistics derived from the years 1970-1990 and for the 

period from 1931-2002. These values are then compared to the downscaled 

sequence intended to represent the year 1980 climate.  The results of all the 

precipitation based meteorological metrics are combined into a single score for 

purposes of comparison.  The score is derived by taking the sum of the 

percent error in each category and normalizing the value to a 0-100% scale, 

with 100% representing a perfect reproduction of the observed statistics and a 

lower score meaning a less successful reproduction of these statistics. 

 

Hydrologic simulations are a useful tool for integrating climate phenomenon 

over larger areas.  Further evaluations of the downscaling approaches 
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described above were performed using the Distributed Hydrology Soil-

Vegetation Model (DHSVM) originally described by Wigmosta, Vail and 

Lettenmaier (1994), this physically based rainfall-runoff hydrologic model is 

described in greater detail in Chapter 5.  The downscaled climate information 

is used in simulations of the South Fork of the Tolt River (see Figure 3.14) 

from the headwaters to approximately 0.8 km below the Tolt Reservoir Dam.  

The hydrologic metric used for the downscaling evaluation is the average 

annual hydrographs of inflow to the S.F. Tolt reservoir smoothed with an 11 

week rolling average. 

 

Examination of Temporal Downscaling Options 
This section describes the results of climatological and hydrologic metrics 

when the downscaling processes are applied using the IRI regional climate 

data.  To reduce the number of possible combinations of options, the first step 

in this analysis is to examine the temporal downscaling options.  The best 

temporal method will then be used to examine the effects of the time series 

options. 

 

All three of the temporal downscaling options, the scenario match, best 

precipitation, and best temperature match, will by definition produce identical 

monthly average temperatures and monthly total precipitation.  These metrics 

are not useful for evaluation; however, the daily maximum and minimum 

temperature results do show small differences that are worth examining.  

Figure 3.15 shows the average annual monthly values for maximum daily 

temperature (Tmax), minimum daily temperature (Tmin) and total monthly 

precipitation (Prcp).  The root mean square error of the difference between the 

1970-1990 curve and the three temporal downscaling options are shown in 

Table 3.3.  
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Figure 3.14 – Locations of meteorological station used in downscaling and 
Seattle area water supply river basins. 
 

Table 3.3 – Root Mean Square errors of downscaled annual climate curves.  The 
percent of total error is unit-less values intended only to illustrate the relative 
performance of the different methods.  The closer the average error is to zero 
the better the method’s performance at reproducing the 1970-1990 curves. 

RMSE Dqcs_1980 Dqcp_1980 Dqct_1980 hist70-90 hist28-02 
Tmax 0.36 0.38 0.21 0.00 0.40
Tmin 0.26 0.30 0.32 0.00 0.37
Prcp 9.56 9.56 9.55 0.00 8.79
% total error 26.3% 28.4% 15.9% 0.0% 29.4%

 20.9% 24.2% 25.8% 0.0% 29.1%
 25.5% 25.5% 25.5% 0.0% 23.5%

Average 
error 24.3% 26.0% 22.4% 0.0% 27.3%

 

The average error is a relative measure of the different methods’ performance 

in reproducing the 1970-1990 climate.  A perfect match would have an error 

of zero.  The average error, based on the individual root mean square errors, 

indicates the best match temperature method (Dqct) performs best. The 
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differences between methods are fairly small, and all three approaches 

reproduce the desired results reasonably well. 
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Figure 3.15 – Average monthly daily minimum and maximum temperatures and 
total monthly precipitation values for the historic periods 1970-1990 and 1928-
2002, and for the three temporal downscaling options intended to reproduce the 
1970-1990 statistics. The prcp curves for Dqcs, Dqcp and Dqct all lie on top of 
each other and therefore appear as a single line. 

 

The results of the remaining climate metrics are shown in Table 3.4. Statistics 

are normalized to a percentage by calculating the percent error between the 

each statistic compared to the hist70-90 result.  Averaging the results of all 11 

tests then yields a single composite score for the method. A perfect result is a 

score of 100% with deviation from the hist70-90 values resulting in lower 

scores.   The best match by precipitation method (Dqcp), in terms of the 
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precipitation based metrics, scores even better then the complete historic 

record (hist28-02) which is not downscaled.   

 

The hydrologic metrics used for evaluating the effects of the temporal 

downscaling options are limited to an examination of an 11-week rolling 

average annual hydrograph, shown in Figure 3.16.  The performance of the 

downscaling options at reproducing the 1970-1990 hydrograph is quantified 

by using the R2 value and the root mean square error (Table 3.5).  The best 

performance among the three temporal downscaling options, as measured by 

the highest R2 and smallest root mean square error, is the scenario match 

method (Dqcs). 

 

Table 3.4 – Precipitation based statistic results for 3 temporal downscaling 
options and historic values.  The goal of the downscaling is to replicate the 
values of the 70-90 period; results from the historic period 1928-2002 are 
included to gain a sense of the effects of examining different time periods. 

Precipitation Based 
Statistics 

Dqcs_
1980 

Dqcp_
1980 

Dqct_ 
1980 

hist70-90 hist28-02 Unit 

Mean wet day amount: 8.4 8.27 7.84 8.14 8.27 mm 
Stdev wet day amount: 10.3 10.15 11.65 10.37 10.18 mm 
95% wet day amount: 28.73 28.09 28.11 27.43 27.94 mm 
P(wet): 0.509 0.5174 0.5453 0.5266 0.509  
P(dry): 0.491 0.4826 0.4547 0.4734 0.491  
P(wet_t|wet_t-1): 0.3791 0.3908 0.4 0.4004 0.3791  
P(dry_t|dry_t-1): 0.3612 0.356 0.3094 0.3472 0.3612  
Mean wet spell length 3.9181 4.0874 3.7524 4.1748 3.9181 Days 
Stdev wet spell length 3.9382 4.1231 3.5983 3.9787 3.9382 Days 
Mean dry spell length 3.7818 3.8133 3.1302 3.7528 3.7818 Days 
Stdev dry spell length 4.5697 4.524 3.6941 4.468 4.5697 Days 
Composite Score 96.80% 97.88% 91.76% 100.00% 97.10%  

 

The examination of the three temporal downscaling options using three 

different classes of metrics results in each option scoring best once in each of 

the classes.  It is therefore necessary to make some subjective decisions 

regarding the importance of each of the three classes of metrics and the 

relative level of success shown by each option in each of the classes. The 

average monthly minimum temperature, maximum temperature and total 
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precipitation curves show the least degree of distinction between the three 

downscaling options.  Figure 3.15 indicates the difference between the 

downscaling options to be far less than the difference seen between the 1970-

1990 and 1928-2002 data sets.  We can therefore lend less weight to these 

metrics and conclude that the best match temperature option is less 

appropriate than either the best match precipitation or the scenario match 

processes. 
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Figure 3.16 – Average annual inflow to the South Fork Tolt Reservoir comparing 
the different temporal downscaling options.  Hydrograph is computed using a 
rolling 11 week average centered on the plotting date. 

 

Because the goal of this process is to develop a downscaling method for use in 

evaluating water resource impacts of climate change, it is more desirable to 

produce good streamflow data than it is to replicate daily climate statistics.  

The method that produces the best streamflow data is the scenario matching 

option.  The scenario match method is limited to cases in which the future 
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time series has been modified to include observed historic variability as 

described previously in this chapter.  When using GCM time series directly the 

best option remaining will be to use the best match precipitation option.  The 

choice between using an expanded historic time series versus using the GCM 

time series directly must therefore be examined. 

Table 3.5 – R-square and root mean square error statistics comparing the results 
of temporal downscaling methods with the flows created by simulating the 
hydrology of the observed 1970-1990 climate. 

 Dqcs_1980 Dqcp_1980 Dqct_1980 hist70-90 hist28-02 
R2 

0.992 0.964 0.980 1.000 0.989
RMSE (acreft) 112.9 166.1 170.2 0.0 93.6
% of total error 20.8% 30.6% 31.4% 0.0% 17.2%

 

Examination of Spatial Downscaling and Time Series Options 
Having evaluated the impact of the temporal downscaling options, we turn to 

an examination of the differences between the time series options and between 

the traditional delta method and the quantile mapping method.  The 

subsequent examination uses the IRI data set representation of 1980 climate 

(hist70-90) as the basis for the evaluation.  The hist70-90 data are compared 

to the full historic data set (hist28-02) to distinguish the effects of using 

different data subsets versus effects from downscaling.  The downscaling 

options being compared are the delta method (Ddm_1980), a quantile mapping 

method using the GCM time series and best match precipitation (Dqgt_70-90), 

and a quantile mapping method using an expanded historic time series and 

scenario match temporal downscaling (Dqc_1980).  It should be noted that the 

GCM based time series produces a transient representation of climate, while 

the delta method and expanded time series quantile method produce steady-

state representation of climate at a given point in time ( in this case 1980).  

The implications of this difference are that the metrics used to evaluate the 

downscaling options will be calculated with a different number of data points.  

The GCM time series (Dqgt_70-90) will have only 21 years to represent the 

period being examined while the delta method (Ddm_1980) and the expanded 
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time series quantile method (Dqcs_1980) will have 75 years of data (the extent 

of the historic record). 
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Figure 3.17 – Average monthly daily minimum and maximum temperatures and 
total monthly precipitation values for the historic periods 1970-1990 and 1928-
2002, and for the downscaling methods intended to reproduce the 1970-1990 
statistics.  

 

Using the same metrics that were used to evaluate the temporal downscaling 

options, it is now possible to compare the performance of the quantile 

mapping methods with the traditional delta method.  Figure 3.17 shows the 

ability of the different methods at reproducing the aggregate average monthly 

values for maximum daily, minimum daily, and total monthly precipitation.  

Using the root mean square error to quantify the goodness of fit between the 



 77

 

hist70-90 curves, the three downscaling methods and the full historic record 

(Table 3.6), it can be seen that the quantile mapping with an expanded time 

series (Dqcs) performs better then the traditional delta method while quantile 

mapping with the direct GCM time series (Dqgt) performs worse.   

 

Table 3.6 – Root Mean Square errors and tests of significance within downscaled 
annual climate curves. 

RMSE Ddm_1980 Dqgt_70-90 Dqcs_1980 hist70-90 hist28-02 
Tmax 0.55 0.56 0.36 0.00 0.40
Tmin 0.34 0.56 0.26 0.00 0.37
Prcp 10.70 9.94 9.56 0.00 8.79

% of total error 29.7% 29.9% 19.1% 0.0% 21.3%
 22.2% 36.5% 17.3% 0.0% 24.0%
 27.4% 25.5% 24.5% 0.0% 22.5%

Average error 26.5% 30.6% 20.3% 0.0% 22.6%
T-test for significant difference in curves  (2 tailed, 2 sample, unequal variance) 

Tmax 0.997 0.962 0.938 1.000 0.993
Tmin 0.997 0.887 1.000 1.000 0.994
Prcp 0.952 0.868 0.992 1.000 0.933

 

Statistical tests are used to quantify the differences between the downscaling 

methods and test whether these differences are significant (Table 3.6).  The 

results of the t-test demonstrate the average climate values produced using 

the delta method are not significantly different from the hist70-90 base case.  

With the quantile mapping methods, both the minimum daily temperature and 

the total monthly precipitation were significantly different when using the 

GCM time series directly; the maximum daily temperature was significantly 

different when using the expanded time series option.  The goal of the 

downscaling methods is to not be significantly different from the base case, 

therefore the quantile mapping process performs worse overall than the 

traditional delta method; however, upon visual inspection of Figure 3.17, the 

differences appear slight and not greater than the differences which result 

from using different subsets of historic data as is demonstrated by the results 

shown for the hist28-02 data set. 
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The precipitation based metrics shown in Table 3.7 demonstrate that all three 

methods perform well at reproducing the daily precipitation statistics with the 

two quantile mapping methods performing slightly better than the delta 

method.   

 

Table 3.7 – Precipitation based statistic results for downscaling methods and 
historic values.  The goal of the downscaling is to replicate the values of the 70-
90 period; results from the historic period 1928-2002 are included to gain a 
sense of the effects of examining different time periods. 

Precipitation Based 
Statistics 

Ddm_ 
1980 

Dqgt_ 
70-90 

Dqcs_ 
1980 hist70-90 

Hist  
28-02 

 
Units 

Mean wet day amount: 8.63 8.27 8.4 8.14 8.27 mm 
Stdev wet day amount: 10.51 10.14 10.3 10.37 10.18 mm 
95%tile wet day amount: 28.97 27.95 28.73 27.43 27.94 mm 
P(wet): 0.5026 0.5121 0.509 0.5266 0.509  
P(dry): 0.4974 0.4879 0.491 0.4734 0.491  
P(wet_t|wet_t-1): 0.3729 0.3838 0.3791 0.4004 0.3791  
P(dry_t|dry_t-1): 0.3677 0.3595 0.3612 0.3472 0.3612  
Mean wet spell length 3.8742 3.9922 3.9181 4.1748 3.9181 Days 
Stdev wet spell length 3.8901 4.1748 3.9382 3.9787 3.9382 Days 
Mean dry spell length 3.8328 3.7983 3.7818 3.7528 3.7818 Days 
Stdev dry spell length 4.828 4.4888 4.5697 4.468 4.5697 Days 
Composite Score 95.00% 97.25% 96.80% 100.00% 97.10%  

 

 

The final metric considered is the inflow to the South Fork Tolt Reservoir, the 

results of which area shown in Figure 3.18 and Table 3.8.  Overall the quantile 

mapping method with expanded time series performs best for this metric.  All 

of the methods produce excessively high flows in the early spring months.  The 

source of these high, spring flows in not readily apparent from inspection of 

the climate values, but is likely due to a combined effect of low winter 

temperatures and high spring precipitation values.  The ability of hydrologic 

metrics to integrate climate values over time and space makes for a useful 

tool, but also makes it difficult to determine the specific causality of particular 

results.  In light of the intended application of these methods to water 

resource impact analysis it is helpful to consider average annual flows shown 

in the hydrographs of Figure 3.18.   
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If flows in a particular month are not simulated perfectly, it remains important 

for the total mass balance over the water year to be reasonably accurate.  A 

comparison of the area under each hydrograph as a percentage of the hist70-

90 total is given in Table 3.8.  These results show the delta method to be 

overstating the total annual inflows by over 8 percent; this can be compared to 

an over-estimate of 2 to 3 percent in the quantile mapping methods.  The 

hist28-02 data set, by comparison, also over-estimates the 1970-1990 average 

total volume by nearly 2 percent.  From these results we can infer the error 

seen in the quantile mapping processes to be within the range expected to be 

caused by the random effects of using different estimation methods for the 

same value. 

 

Table 3.8 – R-square and root mean square error statistics comparing the results 
of downscaling options with the flows created by simulating the hydrology of the 
observed 1970-1990 climate. 

 Hist 
70-90 

Hist 
28-02 

IRIDdm_ 
1980 

IRIDqgt_ 
70-90 

IRIDqcs_ 
1980 

R2 
1.00 0.99 0.99 0.94 0.99

RMSE 
(acreft) 0.0 93.6 212.0 185.8 112.9
% of total 
error 0.0% 15.5% 35.1% 30.8% 18.7%
Mass 
balance 100.0% 102.0% 108.0% 101.7% 102.9%

 

Uncertainty in Downscaling 
Downscaling has been called “among the least quantifiable” steps in the 

process of using climate models to assess climate change impacts to water 

resources (Wood et al, 1997).  It is, however, important to determine the 

relative uncertainty in this process.  The uncertainties help describe the range 

within which we are certain the “true” value would lie if the downscaling 

process were perfect.   
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Figure 3.18 – Average annual inflow to the South Fork Tolt Reservoir comparing 
the different downscaling methods.  Hydrograph is computed using a rolling 11 
week average centered on the plotting date. 

 

It is difficult to know exactly how well the quantile mapping process performs 

when employing the extended time series designed to produce the greatest 

possible range of natural variability.  While it is reasonable to compare 

downscaling results with observed records for a given period, it would be 

unreasonable to expect an exact match.  Observed records give only what 

actually happened in a given year, whereas the downscaling methods being 

examined attempt to produce the range what could have happened in that 

given year.  Therefore, as long as the observed falls within the range of 

predictions it can be considered successful.  The full quantile mapping process 

adds uncertainty by more completely addressing the entire range of possible 

states.  A certain degree of subjective judgment is required to assess whether 

the range of values being produced by the downscaling process is reasonable.   

 

It is possible to assess a portion of the overall downscaling process by looking 

at the results of a transient climate representation and comparing it to 
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historical data.  Using the average annual hydrograph metric makes it 

possible to aggregate all of the uncertainty contained in different climate 

variables at multiple stations into a single representation.  We use the quantile 

mapping method, with the transient GCM time series, the IRI climate data set 

in lieu of a “perfect” GCM, to create a time series of streamflows the should be 

in reasonable agreement with flows developed using observe station data.  
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Figure 3.19 – Comparison of inflows to the South Fork Tolt Reservoir for years 
outside of the downscaling training data.  Hydrographs are smoothed with an 11 
week rolling average. 

 

Figure 3.19  illustrates the relationship between reservoir inflow simulated 

using observed daily meteorology and inflows simulated using downscaled 

regional, monthly data.  Because both curves are simulated hydrology and are 

representative of the same period, the differences between the two curves are 

entirely due to the limitations of the downscaling method. These limitations 

are not unique to the method employed but are characteristic of all statistical 

downscaling methods.  There is imperfect correlation between daily point 

values of a climate variable, such as daily precipitation at Snoqualmie Falls, 
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and a monthly regional value, such as the total average precipitation for 

Western Washington in March.  In the absence of additional information about 

the daily weather at a point station, information that will never be available 

from climate models of future climate, it is impossible to perfectly reproduce 

daily values based solely on monthly information (Grotch and MacCracken, 

1991). 

 

Weekly Root Mean Square Error After Downscaling as a 
Percentage of Average Annual Flow - Inflow to South Fork 
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Figure 3.20 – Weekly values of root mean square errors expressed as a 
percentage of the average annual flow.  The range of uncertainty in reservoirs 
inflows caused by the downscaling process is from 15 to 51 percent. 

 

The uncertainty in downscaling as it impacts streamflow can be quantified 

using the weekly root mean square error (RMSE) and expressed as a 

percentage of the average annual flow.  Figure 3.20 shows the quantified 

uncertainty from downscaling at a weekly time step for the inflow to the South 

Fork Tolt Reservoir.  The average value for the year is approximately 27%, with 

the minimum value being ~15% and the maximum value ~51%.  In other 

words, when considering streamflows into the Tolt Reservoir that are derived 

from downscaled regional climate values, the precision of the predicted flows 

can only be known to be accurate within 27% of the average annual flow.  In 
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the case of the Tolt River this is equivalent to around 1200 acre-ft/week.  This 

measure of uncertainty shows a seasonal pattern with the lowest seasonal 

average of 20% being in the spring (March-April-May), and the greatest degree 

of uncertainty, 36%, appearing in the autumn average (September-October-

November).  The average over winter months is 22% of the average annual 

flow, and the summer months 30% of the average annual flow. 
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Figure 3.21 – Estimate of uncertainty due to natural variability compared to 
uncertainty caused from downscaling.  The natural uncertainty is derived as the 
root mean square error when assuming average conditions every year divided by 
the average flow for the given week.   

 

The figure of 1200 acre-ft/week seems large when you consider the average 

weekly inflows to be only between 2500 and 2600 acre-ft/week.  It should be 

noted, however, that river system being examined has a high degree of natural 

variability relative to the average flow.  If one assumes average conditions will 

occur in each year, the amount of uncertainty due to natural variability 

exceeds the uncertainty from downscaling.  This can be shown using the same 

procedure as used above to quantify the natural annual uncertainty (Figure 

3.21).  The uncertainty attributably to natural variability is approximately 36% 
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(over 1700 acre-ft/week) when averaged over 52 weeks.  Figure 3.21 illustrates 

the relative magnitudes of uncertainly from natural variability as compared to 

that from downscaling.   

 

The percentages used above describe the uncertainty calculated when 

downscaling specifically for the South Fork Tolt basin.  The same process can 

be applied to other watershed, but it is not safe to assume the magnitude of 

the uncertain shown here will be universally applicable.  The magnitude of the 

uncertainty is directly related to the strength of the correlation observed 

between regional climate signals and the weather patterns at point stations 

used in the hydrologic simulations.  The patterns of uncertainty are likely to 

be consistent in regions of similar climate; for example, when the same 

process is applied to the Cedar River watershed, located approximately 40km 

south of the South Fork Tolt River, the error values range from 22% to 59% 

with an average value of 33% as shown in Figure 3.22. 
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Figure 3.22 – Weekly values of root mean square errors expressed as a 
percentage of the average annual flow.  The range of uncertainty in reservoirs 
inflows caused by the downscaling process is from 22 to 59 percent. 
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Conclusion on Downscaling 
Changes in climate are unlikely to occur as a uniform shift in mean values.  

Mearns et al. (1984) found by examining historic climate records at several 

sites in the Midwestern U.S., that the relationship between shifts in mean 

temperature and shifts in the probabilities of extreme events is highly non-

linear.  Because of this fact, it is unreasonable to expect impact assessments 

that rely only on changes in the means of climate variable to fully describe the 

range of potential impacts (Gleick 1986).  In spite of this consideration, 

examining shifts in means via the delta method remains an often used 

technique for impact assessment, and does provide a reasonable 

approximation of the general trend in climate change impacts.  An expansion 

upon the delta method that allows for differential shifts in climate variables at 

different probabilities has been proposed as a downscaling approach that 

maintains the computational efficiency of the delta method while allowing for 

different rates of change the extremes of the climate distribution.  The quantile 

mapping approach has been shown to be an effective method for spatial 

downscaling climate data from the global to the point scale.   

 

If we accept the premise of climate change, the examination of climate change 

impacts to water resources must be targeted to a specific period such as a 

decade.  The transient nature of climate, as simulated by global climate 

models, makes system impact assessment difficult due to the combined effects 

of a constantly shifting underlying climate trend and large year to year 

variability.  System impacts are best described with a longer time series that 

incorporates the full range on potential variability, and is intended to 

represent a steady-state condition as defined by the chosen decade (Arnell, 

1996).  A method for developing an expanded time series that contains the 

range of historic observed variability and a steady-state representation of 

future climate at the targeted assessment period has been developed.  The 

quantile mapping process used with an expanded historic time series has been 

shown to reproduce the desired statistics of the target time period while 
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providing the length and variability of record needed form most system 

reliability assessments. 

 

The delta method, quantile mapping with a transient time series, and quantile 

mapping with an expanded steady-state time series, all are shown to 

reasonably reproduce the desired climate and hydrologic metrics.  Each of 

these methods is justifiable for use in further climate impact assessments.  

The choice of downscaling methods is largely dependant upon the manner in 

which the downscaled output will be applied for climate change impact 

studies.  For application to a water resources evaluation, where natural 

variability can strongly affect system performance and when small changes in 

extreme events can have a much larger impact than changes in the long-term 

means, the quantile mapping approach using an expanded time series is the 

most appropriate.  This is the method that will be used for the subsequent 

hydrologic and systems evaluations performed as a part of this research. 

 

The uncertainty due to downscaling is significant and cannot be ignored; 

however it is not so great that completely obscures the valuable information 

that can be obtained from climate simulations.  All water resource 

management must incorporate a degree of uncertainty; the uncertainty caused 

by the downscaling process is less than that which must be considered every 

year with or without climate change considerations. 

 



 87

 

4 Hydrologic Modeling 
 

Hydrologic conditions in the city’s two water supply basins, the Cedar and 

South Fork Tolt rivers, are simulated using a physically based, high 

resolution, rainfall – runoff model.  The Distributed Hydrology Soil – 

Vegetation Model (DHSVM) was developed at the University of Washington and 

Princeton University.  DHSVM uses GIS derived representations of elevation, 

soil type, soil thickness and vegetation.  These representations are used in 

conjunction with meteorological forcing data to simulate water and energy 

fluxes at and below the land surface at resolutions ranging from 30 to 200 

meters.  The mathematical equations describing the physical processes are 

described by Wigmosta et al. (1994, 2002).  The model has been extensively 

tested for the complex terrain, vegetation types, and climate patterns found in 

the Pacific Northwest.  DHSVM is very effective at simulating the small scale 

hydrologic processes necessary to produce accurate streamflow, snow 

accumulation, and soil moisture patterns, (Bowling 2001, Burges 1998, 

Kenward 2000, Leung 1996, Nijssen 1996, Perkins 1996, Storck 2000, 

VanShaar 2002, Wigmosta 1994 and 1999).  The version used for this 

research is Version 2.0.  Source code is available at 

ftp.hydro.washington.edu/pub/dhsvm/DHSVM-2.0. 

 

Model Inputs 
Application of DHSVM to the Cedar and South Fork Tolt Rivers involves the 

development of a suite of input maps describing the basin and the 

development of a meteorological record to drive the rainfall-runoff process.  

Figure 4.1 is a graphic representation of the data sets incorporated where 

each layer is modeled as a 150m × 150m grid.  The data sets are geo-

referenced using the NAD27 UTM Zone 10 coordinate system. 
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Figure 4.1 – Input layers used to describe the Cedar and South Fork Tolt 
watersheds for application of the Distributed Hydrology Soil-Vegetation Model. 
(Stream network not shown) 
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Elevations 

The Digital Elevation Model (DEM) used as the basis for the Tolt and Cedar 

river models was created using the 1° × 2° 10 meter resolution DEM of western 

Washington created and archived by the University of Washington PRISM 

project.  The original source data of the PRISM product are the USGS 7.5’ 

quads for Washington State (WAGDA, 2004).  The 10 meter resolution is 

aggregated to a 150 meter resolution for use in DHSVM using the ArcGIS 

Spatial Analysis Tool package (ESRI, 2004). 

 

Basin mask and stream network 

The watershed boundaries and stream networks are derived from the basin’s 

150 meter DEM.  Stream channels are assumed to form when the upstream 

contributing area exceeds 0.25km2.  The location of the watershed boundaries 

and the stream channels (Figure 4.2) are verified by comparing them against 

the stream network and watershed GIS layers.  The comparison data sources 

are from the King County Land and Water Resources Department and the 

Washington Department of Ecology (WAGDA, 2004).  

 

Soil types 

Soil is classified into 18 types, not all of which are present in the Cedar and 

Tolt basins.  The classification is based on texture as measured by the overall 

fraction of fine material ranging from silt to talus. This includes additional 

categories for organic soils, water, and bedrock outcrops.  The soil layers were 

defined using the Washington State Department of Natural Resources, 1995 

state soil mapping surveys (WAGDA, 2004).  The physical parameters used to 

describe each soil type include: soil texture class, lateral conductivity, 

conductivity exponential decrease with depth, maximum infiltration, surface 

albedo, number of soil layers, porosity, pore size distribution, bubbling 

pressure, field capacity, wilting point, bulk density, vertical conductivity, 

thermal conductivity, and thermal capacity.  See Appendix F for a listing of the 

parameters for each soil type. 



 90

 

 

 
Figure 4.2 – Comparison of an observation based and derived stream networks.  
The red lines indicate the derived network, the blue the observed.  The S.F.Tolt 
Reservoir does not explicitly exist in the hydrologic model.   

 

Vegetation 

Land cover maps for the Cedar and Tolt basins are based on Washington 

Department of Fish and Wildlife’s Gap Analysis Program (GAP) land cover 

products (WDFW, 1999).  The land cover analysis is based on the 1991 

LandSAT images, and classifies vegetation and land cover by Region, Zone, 

and land cover.  The categories are condensed into 20 DHSVM vegetation 

types.  See Appendix F for a listing of the parameters for each vegetation type. 

 

Each vegetation classification is described by the following parameters: 

impervious fraction, overstory present, understory present, fractional 

coverage, trunk space, aerodynamic attenuation, radiation attenuation, 

maximum snow interception capacity, snow interception efficiency, mass 

release snow drip ratio, height, monthly leaf area index, maximum wind 

resistance, minimum wind resistance, moisture threshold, vapor pressure, 
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albedo, number of root zones, root zone depths, overstory root fraction, and 

understory root fraction. 

 

Soil depth 

Observation or measurement based data on soil depth is not available for 

either the Cedar or Tolt basins.  The values for this input layer are calculated 

using an algorithm that estimates soil depth based on slope, upstream 

contributing area and elevation. 

 

Terrain shading and sky-view 

DHSVM contains the option to apply topographic controls on incoming direct 

and diffuse shortwave radiation. These terrain maps describe the combination 

of slope, aspect and terrain shadows at the midpoint for each time step in a 

typical day for each month of the year (Palmer and Hahn, 2001). Sky view 

maps provide information about the amount of sky visible from each model 

pixel.  These two layers are computed using an algorithm based on the 

geographic position of the watershed and the elevation map.  

 

PRISM precipitation maps 

Precipitation may be distributed in DHSVM from a single point or collection of 

points to every grid cell by the use of modeled precipitation distribution maps.  

The Parameter-elevation Regressions on Independent Slopes Model (PRISM), 

produced at Oregon State University creates precipitation distribution patterns 

based on physical parameters of slope, elevation, and aspect (Daly et al., 1994; 

Daly et al. 1997).  Monthly PRISM maps are acquired for Washington State as 

digital shapefiles from the Spatial Climate Analysis Service (SCAS, 2004).  The 

original units are converted from inches to 100s of mm. 
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Other model parameters 

Additional parameters are used to establish physical characteristics that are 

consistent across the entire basin.  These parameters include: 

• Ground Roughness – Roughness of soil surface (m). 
• Snow Roughness – Roughness of snow surface (m). 
• Rain Threshold – Minimum temperature at which rain occurs (°C). 
• Snow Threshold – Maximum temperature at which snow occurs (°C). 
• Snow Water Capacity – Snow liquid water holding capacity. 
• Reference Height - (Wind) Reference height. 
• Rain LAI Multiplier – Leaf Area Index multiplier for rain interception. 
• Snow LAI Multiplier – Leaf Area Index multiplier for snow interception. 
• Min Intercepted Snow – Intercepted snow that can only be melted. 
• Temperature Lapse Rate – Temperature lapse rate (C/m). 

 

See Appendix F for the values used for each of the above parameters. 

 

Meteorological station data 

The physical basis of the DHSVM model relies on the daily fluctuations of 

incoming and outgoing radiation to perform the energy balances critical to 

proper simulation of snow melt driven systems. Therefore, it is necessary to 

operate the model at a sub-daily time step.  The time step used for this 

research is 3 hours.  Meteorological data, both historic and downscaled GCM 

data (see chapter 2) is available at a daily time step and must be further 

disaggregated to produce the appropriate input files for DHSVM.  The Cedar 

and Tolt applications of DHSVM require 7 meteorological inputs at each time 

step: air temperature (°C), wind speed (m/s), relative humidity (%), incoming 

shortwave radiation (W/m2), incoming longwave radiation (W/m2), 

precipitation (m/time step), and temperature lapse rate (°C/m).  The 

proceeding variables are not always available from even the most reliable 

weather stations, nor are they produced by GCMs.  These values are derived 

based on available data, minimum daily temperature, maximum daily 

temperature, total daily precipitation, station elevation, the geographic 

position of the station, and at least one nearby wind record.  Temporal 
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disaggregation from daily to 3-hourly, and computation of input variables is 

performed using a set of programs designed for this purpose.  The stations 

used in the hydrologic modeling are given in Table 4.1, their positions relative 

to the water supply basins are shown in Figure 4.3. 

 

 
Figure 4.3 – DHSVM met stations and Puget Sound region water supply basins. 

 

Model Outputs 
Output from DHSMV is available as both streamflow at a specified point in the 

basin and as basin wide maps of soil properties (such as total soil moisture, 

total evapotranspiration, or accumulated snow).  For the purpose of this 

research, the archived output consists of five streamflow points for the Cedar 

River, and 3 points on the Tolt, and the basin-wide average snow water 

equivalent (swe).  A list of information about the streamflow output points is 

given in Table 4.2.  The point’s names are related to the system’s model used 

to asses the combined water supply system (see Chapter 5). 
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Table 4.1 – Meteorological station data used for DHSVM simulation of the Cedar 
and South Fork Tolt basins.  (NCDC, 2003) 

Station Name NCDC Coop# Location  Period of Record 

Cedar Lake 451233 45°24’46”N 
121°45’23”W 1915 – present 

Kent 454169 45°25’2”N 
122°14’36”W 1915 – present 

Landsburg 454486 45°22’35”N 
121°59’39”W 1915 – present 

Palmer  456295 47°17 ‘1”N 
121°51’5”W 1925 – present 

Sea-Tac 457473 47°26’40”N 
122°18’50”W 1948 – present 

Snoqualmie 
Falls 457773 47°32’33”N 

121°50’11”W 1915 – present 

Stampede 
Pass 458009 47°17’36”N 

121°20’14”W 1944 – present 

Startup 458034 47°51’59”N 
121°43’3”W 1924 – present 

 

Table 4.2 – DHSVM streamflow output nodes, note * only Tolt7 and Cedar1 are 
directly comparable to unregulated USGS gauging stations. 

Output 
Node Basin  Location  “Observed” 

equivalent 
Note 
 

Tolt7 South Fork 
Tolt River 

47°42’26”N 
121°35’46”W 

USGS 
12147600 

Non-regulated 
flow * 

Tolt 20 South Fork 
Tolt River 

47°41’31”N 
121°41’23”W 

SPU_ 
Tolt_20_S  

Tolt8 South Fork 
Tolt River 

47°41’19”N 
121°43’5”W 

USGS 
12148000 

HCP, Instream 
flow 
compliance 
point 

Cedar1 Cedar River 
Basin 

47°22’11”N 
121°39’50”W 

USGS 
12114500 

Non-regulated 
flow * 

Cedar18 Cedar River 
Basin 

47°25’52”N 
121°45’30”W 

USGS 
12116100  

Cedar2 Cedar River 
Basin 

47°22’59”N 
121°59’1”W 

USGS 
12117600  

Cedar3 Cedar River 
Basin 

47°28’0”N 
122°6’23”W 

SPU_ 
Cedar_3_S 

Spawning 
channel 

Cedar5 Cedar River 
Basin 

47°29’0”N 
122°12’10”W 

USGS  
12119000 

Mouth of 
Cedar at Lake 
Washington 

Cedar4 Cedar River 
Basin 

47°39’57”N 
122°23’52”W 

Chittenden 
Locks 

Not simulated, 
(regression) 



 95

 

The streamflow at the points in Table 4.2 is assessed after the data has been 

post processed to represent inflows between successive points.  The locations 

of the model output points are shown in Figure 4.4.  The points outside of the 

basin boundaries (Tolt8 and Cedar4) are calculated using a combination of 

hydrology model output and a statistical regression model. 

 

 
Figure 4.4 – Seattle water supply basins and output points used in DHSVM 
models.  Each point represents the total inflow to the main stem of the river 
between that point and the next nearest upstream point.   

 

Calibration Parameters 
DHSVM is calibrated primarily through the adjustment of the physical 

parameters that describe the system.  The values used for soil and vegetation 

parameters can be seen in Appendices F and G.  Additional calibration is 

performed by adjusting the manner in which the model distributes 



 96

 

temperature and precipitation from point values at each station to the full 

basin grid.  Temperature distributions are controlled using a variable 

temperature lapse rate.  The temperature lapse rate is varied according to 

calendar month using stream flow and snowpack at point measurements to 

assess the calibration.  The variable temperature lapse rates used are given in 

Table 4.3.  Precipitation distributions are controlled by altering the assigned 

PRISM map constant for each input station.  The final calibration PRISM 

values are given in Table 4.4. 
 

Table 4.3 – Monthly variable temperature lapse rates for the two models (°C/m) 

Month Cedar Basin Tolt Basin 
January -0.004 -0.0055 
February -0.0065 -0.0075 
March -0.008 -0.007 
April -0.008 -0.007 
May -0.005 -0.005 
June -0.005 -0.005 
July -0.005 -0.005 
August -0.005 -0.005 
September -0.005 -0.005 
October -0.005 -0.005 
November -0.005 -0.005 
December -0.005 -0.005 

 
Table 4.4 – Monthly PRISM map coefficients for stations used in models.  Values 
are in 100s of millimeters. 

      Station 
Month 

Cedar Kent Lands-
burg 

Palmer Stamp-
ede  

Startup Snoq-
ualmie 

January 36005 8033 18701 32830 42863 9943 9943
February 27337 5937 13875 24670 31718 6918 7520
March 26003 10954 12668 23336 28289 8355 7687
April 24098 6572 11335 21177 17494 6317 5113
May 15875 3112 7430 14605 12383 4829 3693
June 13335 2000 6287 12065 9081 3476 2941
July 7334 857 3778 6636 4286 1755 1253
August 8255 1588 4001 8255 6223 2406 1872
September 12002 2223 7017 10859 11430 4011 3476
October 19685 4128 10859 18415 25781 6808 6159
November 39434 7303 16732 34322 46260 13218 12463
December 31750 7938 17717 29845 44450 12048 12048
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Calibration and Validation Datasets 
The Cedar and Tolt DHSVM models are calibrated and validated using an 

observation based data set made available by Seattle Public Utilities.  Because 

both the Cedar and the Tolt are managed rivers, streamflow gauges are of 

limited utility for calibrating the lower reaches of the basin.  Therefore, a set of 

naturalized streamflows is used that is derived based on gauging station, 

reservoir elevation, and reservoir release records (SWD 1995).  Additional 

validation of the models ability to properly replicate the complexities of a transient 

snow-rain basin is performed by comparing point records of snow water equivalent 

from DHSVM with ground measurements from the Western Regional Climate Center’s 

Snow Telemetry (Snotel) network (WRCC 2004).  Daily snow water equivalent values 

from one station in the upper elevations of each basin are compared to output from the 

equivalent point in each DHSVM model (Table 4.5) 

 
Table 4.5 – Snowtel validation site information 

Site Basin NRCS ID Location Elevation Period of 
Record 

Tinkham 
Creek 

Cedar 21B20S 47°19’N 
121°28’W 

935m 10/1/1995-
present 

Skookum 
Creek 

Tolt 21B60S 47°41’N 
121°36’W 

1190m 10/1/1995-
present 

 

Data Post-Processing  
Several post processing steps are used to convert the raw DHSVM output into 

formats useful for both validation purposes and for subsequent use in the 

systems evaluation model. 

 

Flow aggregation 

Raw streamflow output is in the form of m3/3 hours.  Streamflows are 

aggregated first to daily values in cfs, and second to weekly values in acre-

ft/day.  The weekly flows are established using a predefined calendar of 52 

weeks per water year, starting October 1st.  The first day of each water week is 
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given in Table 4.6.  The streamflow for each week is the average of the daily 

flows within that week.  All weeks except week 22 and 52 are seven-day 

weeks.  Week 52 is an eight day average in every year, while week 22 is an 

eight day average only in leap years. 

 
Table 4.6 – Definition of the water year used for weekly flow aggregation 

Week Start 
date 

Week Start 
date 

Week Start 
date 

Week Start 
date 

1 Oct 1 14 Dec 31 27 Apr 01 40 July 01 
2 Oct 8 15 Jan 07 28 Apr 08 41 July 08 
3 Oct 15 16 Jan 14 29 Apr 15 42 July 15 
4 Oct 22 17 Jan 21 30 Apr 22 43 July 22 
5 Oct 29 18 Jan 28 31 Apr 29 44 July 29 
6 Nov 05  19 Feb 04 32 May 06 45 Aug 05 
7 Nov 12  20 Feb 11 33 May 13 46 Aug 12 
8 Nov 19 21 Feb 18 34 May 20 47 Aug 19 
9 Nov 26 22* Feb 25 35 May 27 48 Aug 26 
10 Dec 03 23 Mar 04 36 Jun 03 49 Sept 02 
11 Dec 10 24 Mar 11 37 Jun 10 50 Sept 09 
12 Dec 17 25 Mar 18 38 Jun 17 51 Sept 16 
13 Dec 24 26 Mar 25 39 Jun 24 52* Sept 23 

* week 22 is 8 days long in leap years, week 52 is always 8 days long. 

 

Bias correction of streamflows 

The lower reaches of the Cedar River basin contains urban development and 

the accompanying road networks, storm drains, and land clearing.  These 

features have the potential to affect the area’s hydrologic response, 

particularly with regard to the Cedar3 and Cedar5 streamflows. (Figure 4.4).  

The physical reality of these lower reaches is poorly represented by the soil 

and vegetation maps used in the Cedar basin DHSVM, and there is therefore 

an error in the simulation of runoff in these lower reaches.  The lower basin is 

below the region used by the City of Seattle for water supply, but it does 

contain several threatened species of Pacific Salmon (SPU 1998b).  Accurate 

representation of the lower reaches is useful for planning to meet in-stream 

flow requirements set in place to protect aquatic animals.  Flows in the middle 
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reaches of the Cedar River basin are altered from the natural, pre-development 

flow regime due to the presence of the Chester Morse Dam.  The dam is 

constructed above a glacial moraine, enabling a considerable degree of seepage 

from the lake created by the impoundment.  The seepage flows in the moraine 

move faster than natural ground water and return to the channel over an 

approximately 8 km section below the dam.  The effect on the inflows to the 

river below the dam, are manifested as an increase in the base flow.  In order 

to better simulate flows in the regulated and developed portions of the basin a 

bias-correction scheme is used on the flows designated Cedar2, Cedar3 and 

Cedar5.  
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Figure 4.5 – Naturalized calculated flows (SPU), raw simulated flows 
(DHSVM_raw), and bias-corrected simulated flows (DHSVM) for the Cedar2 system 
inflows.  The total mass balance for the 8 years is 80% of SPU for raw data, 
improving to 93% for the bias-corrected data. 

 
The bias correction scheme used for the Cedar2, Cedar3, and Cedar5 flows 

functions by using a period of observed historic flows to serve as training data.  

The cumulative distribution functions for each week of the water year at each 

point are calculated using observed flows and simulated flows from a 

concurrent period.  A transfer function is then established based on the 
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relationship between the observed value cdf and the simulated value cdf.  

Simulated flows can then by modified using this transfer function to more 

closely represent the observed patterns.  The training data used to establish 

the quantile relationships is 1940-1990.  Figure 4.5, Figure 4.6, and Figure 

4.7 demonstrate the effects of the bias correction procedure for the years 

1930-1937. 
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Figure 4.6 – Naturalized calculated flows (SPU), raw simulated flows 
(DHSVM_raw), and bias-corrected simulated flows (DHSVM) for the Cedar3 system 
inflows.  The total mass balance for the 8 years is 124% of SPU for raw data, 
improving to 101% for the bias-corrected data. 

 

The Cedar2, Cedar3 and Cedar5 flows all show improvement in terms of the 

total mass balance after the bias-correction scheme is applied.  The effects of 

the procedure on the base flow for Cedar2 are particularly apparent in Figure 

4.5 during the lower flow summer months. 

 

Statistical extension for Cedar4 

Additional information for use in instream flow planning is also created as a 

post-processing step.  Flows outside the Cedar basin are derived using a 
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simple regression model.  These flows are designated Cedar4.  The Cedar4 

regression model uses the bias-corrected Cedar3 and Cedar5 values and the 

upstreamCedar1, Cedar2, andCedar18 values to predict the total amount of 

water flowing into the system between the Cedar River outflow to Lake 

Washington at Renton, WA and the outlet to Puget Sound near the Chittenden 

Ship Locks in Seattle, WA.  The regression model is based on “observed” and 

simulated data from 1929-1969.  The “observed” data is calculated by the staff 

of Seattle Public Utilities and is based on a combination of measured USGE 

gauging stations, and known reservoir elevations and releases.  The structure 

of the regression model is: 
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An example of the regression model’s performance for data outside of the 

training data set is shown in Figure 4.8. 
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Figure 4.7 – Naturalized calculated flows (SPU), raw simulated flows 
(DHSVM_raw), and bias-corrected simulated flows (DHSVM) for the Cedar5 system 
inflows.  The total mass balance for the 8 years is 128% of SPU for raw data, 
improving to 102% for the bias-corrected data. 
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Model Validation 
The stream flows not post-processed with the bias correction scheme are those 

that are highest in the watersheds and consequently least affected by 

disturbances to the natural system.  These flows provide an opportunity to 

assess the performance of the model without the effects of man-made systems.  

Figure 4.9 through Figure 4.13 show eight years of streamflow records at the 

remaining, non-bias corrected flow points in the system.  The mass balance 

ratio of the five flows ranges from 95% to 117% and average 101%.  However, 

this value can vary widely depending on the particular years being examined. 

 

The flows in this system that most affect the ability to meet system demands 

are the flows that occur above the two reservoirs.  Cedar1, Cedar18, Tolt7 and 

Tolt20 represent the combined system inflows that are capable of being stored.  

Figure 4.14 shows the average annual hydrograph from a 60-year period for 

the combined system inflows as computed by SPU and as simulated by 

DHSVM.  This graph demonstrates that the long-term averages match very 

well, while DHSVM tends to over- and under-state the extreme events.  The 

critical time periods for system management, the summer and early fall low 

flows, match well at all quartiles. 
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Figure 4.8 – DHSVM based regression versus SPU calculated values for the 
Cedar4 system inflow.  The mass balance ratio for the nine years shown is 94%. 
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Figure 4.9 – Observed flows (SPU), and simulated flows (DHSVM_raw) for the 
Cedar1 system inflows.  The total mass balance for the 8 years is 102% of SPU 
data.  Cedar1 flows are measured at USGS gauging station 12115000 
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Figure 4.10 – Naturalized, calculated flows (SPU), and simulated flows 
(DHSVM_raw) for the Cedar1 system inflows.  The total mass balance for the 8 
years is 117% of SPU data.  
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Figure 4.11 – Observed flows (SPU), and simulated flows (DHSVM_raw) for the 
Tolt7 system inflows.  The total mass balance for the 8 years is 95% of SPU data.  
Tolt7 flows are measured at USGS gauging station 12147600 
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Figure 4.12 – Naturalized, calculated flows (SPU), and simulated flows 
(DHSVM_raw) for the Tolt8 system inflows.  The total mass balance for the 8 
years is 95% of SPU data.   
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Figure 4.13 – Naturalized, calculated flows (SPU), and simulated flows 
(DHSVM_raw) for the Tolt20 system inflows.  The total mass balance for the 8 
years is 96% of SPU data. 
 

 

Figure 4.14 – Sixty year average annual hydrograph with quartile distributions 
comparing combined reservoir inflows from the naturalized, SPU data and 
simulated DHSVM data.   
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Snotel validation 

The daily snow water equivalent from observed Snotel sites and the 

corresponding DHSVM output is shown in Figure 4.15.  The annual maximum 

values as well as the timing of snow pack accumulation are well simulated.  

The discrepancy in the 1996 and 1997 water years at the Skookum Creek site 

is possibly due to errors in data processing during the initial telemetry 

operation at each site.  No long-term, basin wide observations of snow pack 

exist, therefore a degree of uncertainty remains regarding our ability to fully 

replicate the total volume of water stored as snow.  However, the accuracy in 

replicating point measurements, as evidenced by the Snotel sites allows a high 

degree of confidence in the validity of the hydrologic simulations, conditioned 

on the knowledge that the model as well as the observed record contains 

elements of uncertainty. 
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Figure 4.15 – Snotel observations of daily snow water equivalent versus DHSVM 
simulated snow water equivalent. (Dates indicate the end of each water year.) 
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Conclusions on Hydrologic Modeling 
The availability of relatively complete observed, or observation based data sets 

from model calibration and validation provides a good sense of the hydrology 

model’s ability to simulate the appropriate rainfall-runoff response.  In the 

larger context of climate change impact assessment on water resources, the 

hydrologic modeling stage provides the least amount of uncertainty among the 

3 major models stages.  DHSVM is a useful tool for converting climate 

information to streamflow with a high degree of accuracy. 
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5 Systems Evaluation 
 

Chapter 4 presents the impacts of climate change on the hydrology of the 

region’s water supply basins.  This chapter explains how these hydrologic 

impacts manifest as impacts on the natural and human systems dependant 

upon these rivers. The approach employed requires the use of a system 

simulation tool.  The Cedar and South Fork Tolt Rivers are components of a 

highly regulated system, the operation of which has many variables and can 

greatly influence the manner in which changes in streamflow patterns are 

propagated into water supply or instream habitat impacts (see Appendix H for 

a schematic of major system components).  This chapter describes the tools 

and methodology used to examine climate change impacts on the Seattle 

water supply system, and describes these impacts using a suite of system 

metrics. 

 

System Analysis 
The system evaluation incorporates three estimates of current conditions and 

four different GCM based simulations of the conditions in decade surrounding 

the years 2000, 2020, and 2040.  Three different estimators of current 

conditions are used in order to provide a minimum boundary on the 

uncertainty caused by downscaling, hydrologic modeling, and system 

modeling in terms of system metrics.  This approach illustrates the breadth of 

variability seen when evaluating the system for what is ostensible a known 

condition, the present state.  This approach reveals the maximum precision at 

which it is possible to evaluate the system at any given time.   

 

The Seattle water supply system is simulated using the Conjunctive Use 

Evaluation Model (CUE) version 4 (SPU 1998).  The CUE model is provided by 

the Seattle Public Utilities, Water Quality and Supply Division.  This model is 
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a systems simulation tool, based on maintaining mass balances and requiring 

a set of stream flow inputs on a weekly time step (SPU 1998).  The CUE model 

used for this research is unmodified from the tool used by the Seattle Public 

Utilities for regular system evaluation with the exception of the addition of a 

linked input spreadsheet to allow for the user to select from a variety of 

streamflow inputs.  

 

Since 1994, the regions average annual demand has remained at 

approximately 150 million gallons per day (MGD).  This is due largely to the 

use of aggressive conservation programs.  Recent demand forecasts anticipate 

that the area’s demand will not exceed this value until the year 2015 (SPU 

2001).  In order to isolate the effect of climate change from other demographic 

shifts, such as changes in demand, this demand level is employed consistently 

for all CUE model runs other than yield evaluations; this includes the storage 

probabilities and in-stream flow probability metrics. 

 

Metrics that depict reservoir storage conditions are calculated in terms of 

active storage.  The active storage of the system is the total storage simulated 

using the CUE model, less the dead storage of each reservoir.  In low water 

years, Seattle Public Utilities has plans which allow for the pumping of water 

from dead storage.  The implementing of this pumping procedure is not 

considered as a standard operation policy, and is therefore not incorporated 

when evaluating the climate change impacts.  These policies could be 

considered as mitigation strategies once the impacts have been assessed.  The 

dead storage of the reservoirs used in this analysis is 36.064 KAF in the Cedar 

system reservoir and 15.745 KAF in the South Fork Tolt Reservoir. 

 

The three “current condition” estimates are designated in the graphs and 

tables of this chapter as SPU, DHSVM, and IRI.  SPU is based upon a set of 

stream flow data for the Cedar and Tolt basins made using a combination of 

USGS gauging stations, measured reservoir elevations and releases, and 
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known system diversions (Seattle Water Department,1995).  The DHSVM 

streamflow data is created using the DHSVM hydrology model forced by 

observed meteorological station data.  The IRI estimates are derived using 

DHSVM simulated flows forced by only monthly regional climate observations 

(Jones et al., 1999; Hulme, 1992), that have been downscaled to the basin 

scale using the quantile mapping approach.  The results for each metric from 

the three current condition estimators are averaged to form the Historic 

Ensemble. 

 

The four GCM based streamflow scenarios used in the systems analysis are 

derived from the ECHAM4, GFDL_R30, HadCM3, and PCM1.1 climate models, 

all of which were run using the SRES A2 forcing scenario (see Chapter 3).  

Steady-state climate approximations for the decades of 2000, 2020, and 2040 

are incorporated, as well as a transient simulation that represents a direct 

time line of climate from the year 1990 to the year 2075.  The steady-state 

GCM scenarios for the year 2000 are compared to the current conditions 

estimators and are then considered as the baseline from which future climate 

impacts are measured.  

 

Each GCM and decade is analyzed independently with the CUE model. The 

results from each GCM represent the impacts as predicted by a single iteration 

of climate portrayed by the specific model run.  To address the uncertainty 

present in the GCM climate representations, we have chosen to examine the 

system metrics in terms of the ensemble average created from the 4 member 

suite of GCMs.  The use of a GCM ensemble average provides a more 

comprehensive look at the general impacts that are consistent among all 

GCMs while removing small scale system perturbations that may be caused by 

random variability within an individual GCM run.  The results from the 

individual GCMs in terms of the system metrics can be found in Appendix I. 
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Because the GCM data incorporated in this study was archived at a monthly 

time step, the system impacts will also be describes at this time scale.  It is 

necessary to temporally downscale the data to a finer time step to perform the 

hydrologic modeling, however using the sub-monthly time step data for 

systems evaluation would not necessarily add additional value to the analysis. 

Impacts seen using the weekly data produced by the hydrology model are as 

likely to be artifacts of the downscaling process as they are to be actual 

climate change impacts.   

 

The CUE model operates on a weekly time step.  Rather than modify and re-

validate the model, the weekly streamflows produced by the hydrology model 

are averaged into single average value for each month.  Weeks that break over 

the first of each month are prorated by the number of days falling in each 

month.  The product of this averaging is weekly values that can be used as 

CUE input, but that are smoothed into a monthly average without the weekly 

variability that is not directly attributable to the GCM source data.  CUE 

model output is averaged in a similar manner resulting in monthly values for 

all systems metrics. 

 

System Metrics 
The current status of the Seattle water supply system, as well as the projected 

future state, is measured using 4 general metrics: 

• Summer reservoir inflows 

• Probability of storage levels in system components 

• Stream flow levels in the Cedar River at Landsburg 

• Gross yield of the complete system 

Many additional metrics are possible, but the 4 selected provide a reasonable 

sense of the impacts too two critical functions of the system, water supply and 

habitat preservation.   
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Summer reservoir inflows 

System yield is highly sensitive to late summer/fall droughts.  Additionally, 

threatened species of salmon, found in the Cedar River basin rely on 

increasing flows in the early fall for spawning.  For these two reasons, a simple 

initial estimate of the impacts predicted by the climate models can be 

formulated by examining the combined summer inflows into the system’s two 

reservoirs.  The late summer flows are defined for this purpose as the 

combined sum of the Cedar1, Cedar18, Tolt7, and Tolt20 flows over the period 

from June through September.   Seventy-one years of streamflows are used to 

represent the range of potential variability at each decade of analysis, 2000, 

2020, and 2040 (see Chapter 2, Downscaling for a description of the derivation 

of the 70 years of streamflow data.)  The cumulative distribution function of 

the late summer flows for each of the 3 current condition estimators and the 

2000, 2020, and 2040 conditions from each of the four GCMs are calculated.  

The median values (50th percentile) of each cdf are show in Figure 5.1.   

 

Figure 5.1 contains the individual GCM ensemble members, in addition to the 

ensemble mean.  This demonstrates how the use of the ensemble mean can 

provide a more representative assessment than any one specific GCM.  Two of 

the three current condition estimators, SPU, and DHSVM are close agreement 

at 23 thousand acre-feet.  The third current condition estimator, IRI, is 

considered the least reliable, but is important for demonstrating the effects of 

uncertainty caused by the downscaling process; the IRI based estimate for 

median summer inflows is approximately 26 thousand acre-feet.  The four 

GCM values for median year 2000 conditions range from 17 to 26 thousand 

acre-feet, but the ensemble mean of these values falls at 22 thousand acre-

feet.  The ensemble mean forms a very good approximation of the current 

conditions for the median summer reservoir inflows.  Looking at the remainder 

of the probability distribution as compared to a historic ensemble comprised of 

all three historic estimators (Figure 5.2), we see that the year 2000 ensemble 

agrees most closely with the current condition estimators at the median, while 
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tending to fall below the estimator at the extremes of the distribution.  This is 

attributed to the presence of a certain degree of climate change that occurred 

between he beginning of the historic periods (1928 to 1998) and the periods 

used to define the Year 2000 conditions (1990-2010).   
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Figure 5.1 – Median values of summer inflows to the Seattle system reservoirs at 
the decade 2000, 2020 and 2040 for individual GCMs and GCM ensemble 
average.  The three point values at the year 2000 are the three alternative 
representations of historical conditions. 

 

The progression seen in Figure 5.2 from the year 2000 GCM ensemble through 

the year 2020 and year 2040 conditions reveals the likely climate change 

impact on cumulative summer reservoir inflows.  A decrease in inflows is seen 

across the entire distribution averaging just over 130 acre-feet per year or a 

just under 6% loss per decade.  The percentage decreases are relatively 

consistent at all probability levels, meaning the absolute changes are 
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considerably less at the lowest end of the distribution.  At the 98% exceedance 

threshold (i.e. the 50 year drought) commonly used as a threshold in 

evaluating water supply reliability, the rate of decline is only 80 acre-feet per 

year, this relates to an 8.8% decline per decade. 
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Figure 5.2 – Cumulative probability distributions for the combined inflow volume 
to the systems reservoirs from June to September for current conditions and 
three GCM ensemble decades. 

 
Probability of storage levels in system components 

As a water supply system, storage is critical to the management of the 

resource, allowing demand patterns to be significantly different than the 

average annual inflow patterns.  The Seattle system has three main 

components that are used for water storage, two constructed and one natural.  

Natural storage occurs in the form of snow pack, allowing winter precipitation 

to remain in the basin until late into the summer.  The Seattle system relies 

on snowpack storage to supplement the two constructed reservoirs.  A typical 
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measurement of snowpack is taken on April 1st.  By this time substantial 

accumulation of snow has ceased but the spring melt has not yet significantly 

began.   
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Figure 5.3 – Cumulative distribution functions for total volume of water stored 
in the system wide April 1st snowpack for the Historic Ensemble (excluding SPU) 
and the 2000, 2020, and 2040 GCM Ensemble predictions. 

 
As with the summer reservoir inflows, April 1st snowpack storage is seen to 

decline over the 40 years being examined with GCM data.  The greatest 

absolute declines are seen at the high end of the distribution, meaning a 

substantial decrease in the likelihood of high snow years.  For example, the 

median value of the year 2000 curve falls at ~29.6 KAF, this is the amount 

that has a 50 % chance of being met or exceeded each year.  By the 2040s 

that quantity will have shifted to having only a 24% chance of being met or 

exceeded in a given year.  On average there is a loss approximately 15% per 

decade in total April 1st snow storage.  At the 98% exceedance threshold there 
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is an absolute rate of decrease of nearly 90 acre-feet per year.  This 

corresponds to shift from a 2% chance of occurrence to a 28% chance of 

occurrence; in other words, the year 2000 50-year event becomes the year 

2040 4.5 year event. 
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Figure 5.4 – Probability mass function for timing of maximum snow pack storage 
for the DHSVM estimator of current conditions, and the 2000, 2020, and 2040 
GCM ensembles.  Probabilities are calculated as the number of times the 
maximum snow pack occurred in a given month in a simulation, divided by the 
number of years in the simulation. 

 
Changes in snow pack are particularly magnified when considering shifts in 

temperature, particularly when examining a specific point in the year.  Figure 

5.4 illustrates the shifts in timing of the snow pack that correspond with the 

reductions in April 1st snowpack shown in Figure 5.3.  The peak snowpack is 

most likely to occur in March both currently and in all future simulations, 

however, the frequency of the peak occurring in March declines from 64% of 

the time to 51% of the time between 2000 and 2040.  The decrease in March 

peaks is offset by in increase in December, January, and February peaks.  In 
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general, the peak snow season shifts forward in time as well as decreasing as 

is shown in Figure 5.5. 
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Figure 5.5 – Average Annual Curve demonstrating the total volume of water 
stored in the combined Cedar and Tolt basins as snow.   

 
The volume of water contained in snowpack storage is directly affected by 

climate and climate change; as such there is little potential for local adaptive 

strategies to mitigate the effects of climate change.  Instead we rely on 

constructed reservoirs to enable us to alter the natural hydrograph of the 

region’s rivers in order to proved water in the low flow summer months.  In 

order to assess the impacts of climate change on the levels of storage in the 

City’s water supply reservoirs it is first necessary to examine the patterns in 

inflow and drawdown from these reservoirs. 

 

Figure 5.6 shows the average annual inflow hydrographs for the combined 

Chester Morse and South Fork Tolt Reservoirs.  Additionally, the green shaded 
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area indicates the average annual monthly demand patter observed in the 

Puget Sound region.  The demand pattern is taken from the CUE model (SPU, 

1998) and does not include years in which mandatory or voluntary 

curtailment of water consumption were required.  It is clear from Figure 5.6 

that only period during which the demand for water is less than the 

immediately available supply is during the summer months of July, August 

and September. 
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Figure 5.6 – Average annual system inflows and the corresponding average 
annual demand.  The demand curve reflects the current observed demand 
patterns and matches the estimated demands used in the CUE system 
evaluation model. 

 

If we then examine the average annual volume stored in the system’s 

reservoirs (Figure 5.7) we see that this corresponds to the period of drawdown 

as would be expected.  Storage levels are at their lowest in the month of 

September.  From the combined effects of low inflows, high demand, and low 



 119

 

storage - the months of September and October are when the system is most 

vulnerable to shortfalls.  The impacts of climate change are likely to be felt 

first at the most vulnerable points of the system, therefore it the choice of 

September reservoir storage is an ideal metric for examining these impacts. 
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Figure 5.7 – Average annual active storage volumes in the combined Cedar and 
Tolt system reservoirs simulated for present conditions and under climate 
change scenarios using the CUE model. 
 

Using a base demand of 150 MGD, system operations are simulated with the 

CUE model for the three estimators of historic conditions and the year 2000, 

2020, and 2040 scenarios from the suite of four GCMs.  The storage volumes 

in the Chester Morse and South Fork Tolt reservoirs are archived at each time 

step and averaged to monthly values.  The cumulative probability distributions 

are calculated for each run and the four GCM based cdfs are then averaged to 

form the ensemble distribution.  Figure 5.8 and Figure 5.9 show the 
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distributions for the combined system storage and each of the reservoirs 

independently. 
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Figure 5.8 – Cumulative probability functions for September active storage levels 
in the combined Cedar and Tolt reservoir for current conditions and climate 
change scenarios. Storage levels simulated using the CUE model. 
 

In the combined system the average September storage is seen to decline at a 

rate of nearly 200 acre-feet per year, a decline of 1.9% per decade.  At the 98% 

exceedance threshold the decline is larger at over 300 acre-feet per year or 

3.9% per decade.  Figure 5.8 shows the majority of the decline at the 98% 

exceedance threshold to occur between 2000 and 2020.  However, it is 

unlikely the temporal resolution of the climate models is this precise.  The 

approach used in this analysis is therefore to interpolate a linear fit to the 

three points at the years 2000, 2020, and 2040 and to then assume a 

relatively constant rate of change over the 40 year period. 
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In the combined system the average September storage is seen to decline at a 

rate of nearly 200 acre-feet per year, a decline of 1.9% per decade.  At the 98% 

exceedance threshold the decline is larger, over 300 acre-feet per year or 3.9% 

per decade.  Figure 5.8 shows the majority of the decline at the 98% 

exceedance threshold to occur between 2000 and 2020.  However, it is 

unlikely the temporal resolution of the climate models is precise enough to 

support this conclusion.  The approach used in this analysis is therefore to 

interpolate a linear fit to the three points at the years 2000, 2020, and 2040 

and to then assume a relatively constant rate of change over the 40 year 

period.  The degree of inter-annual variability seen in the observed climate of 

the region makes it unreasonable to consider trends over periods shorter than 

40 years. 

 

September storages in the Chester Morse Reservoir and the South Fork Tolt 

Reservoir individually show a considerable lack of synchronicity.  Both river 

systems show a decline, but the rate of decline in the Tolt reservoir exceeds 

that of the Chester Morse reservoirs by nearly a factor of 1.5.  This is likely 

caused by the fact that the Tolt is far more heavily used in terms of the annual 

volume diverted versus its average annual flow.  The average decline in the 

Cedar system is near 80 acre-feet per year, while is just under 120 acre-feet 

per year in the Tolt system.  At the 98% exceedance threshold the rate of 

change in the Cedar system is a decline of 2.5% per decade.  The Tolt rate at 

this threshold is a decline of 5.3% per decade.  The implication of this change 

at the 98% exceedance threshold is a shift in the recurrence period of the 

events that are used to define the system’s limitations.  In the year 2000 

ensemble the 50 year, September storage is approximately 83 thousand acre-

feet.  By the year 2040, this return interval for an event of this magnitude is 

shifted to a 7.8 year return period, implying a significant shift in the definition 

of the system’s limitations. 
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Likelihood of September Storage in Tolt River 
System at base demand of 150 mgd
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Figure 5.9 – Cumulative probability functions for September storage levels in the 
Chester Morse reservoir and South Fork Tolt Reservoir for current conditions 
and climate change scenarios. Storage levels simulated using the CUE model. 
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Stream flow levels in the Cedar River at Landsburg 

In April of 2000, the City of Seattle and Seattle Public Utilities adopted the 

Habitat Conservation Plan to address many important environmental concerns 

with regard to the operation of the water supply and hydropower systems 

operating in the Cedar River Basin (SPU 2000).  Foremost among the concerns 

are two species of anadromous salmon: Chinook, which are currently listed as 

threatened under the terms of the US Endangered Species Act and an 

economically important run of Sockeye salmon.  Both species reproduce in the 

Cedar River as well as two other species of salmon, Steelhead and Coho.  

Additionally, numerous other species of freshwater fish, water fowl and 

mammals enjoy the relative sanctity of the closed watershed.  The Habitat 

Conservation Plan (HCP) developed in conjunction with many interested 

parties, is the institutional mechanism chosen by Seattle Public Utilities to 

fulfill their commitment to preserving wildlife in the area (SPU 2000).  Among 

the many provision of the HCP, there are two which will be examined in the 

context of climate change impacts.  The HCP defines guaranteed minimum 

flows at specific times of the year to facilitate the reproductive cycle of the 

Cedar River Chinook and Sockeye salmon (Figure 5.10).  Guaranteed flows are 

monitored at specific control points, this research examines flows at a point 

immediately below the water supply diversion works at Landsburg.   

 
The average flows at Landsburg are well above the instream flow requirements 

for all the ensembles both historic and GCM based.  In order to assess the 

impacts of climate change on the ability to meet instream flow requirements 

we examine the number of instances in each system simulation run when 

flows drop below the requirements.  Any year in which there are one or more 

instances of failing to meet a flow requirement is considered a single failure.  

The number of failures is then divided by the number of years simulated to 

produce a probability of failure at each requirement level.  The probabilities 

from each GCM and the different historic estimators are then averaged to 

produce the ensemble estimates shown in Table 5.1.  The low normal flows 
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shown in Figure 5.10 are used as the set target during the systems 

simulations, therefore the probabilities of meting the high-normal goals are 

not calculated. 
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Figure 5.10 – Guaranteed flows at Landsburg on the Cedar River.  Graphs 
reproduced from Instream Flow Agreement, (SPU,2000). 
 

Table 5.1 – Probabilities of instream flow failures at Landsburg 

 Historic 
Ensemble 

GCM 
Ensemble 
2000 

GCM 
Ensemble 
2020 

GCM 
Ensemble 
2040 

Fail Normal 0.07 0.10 0.12 0.15 
Fail Critical 0.00 0.00 0.00 0.02 

 

The results shown in Table 5.1 indicate an increasing likelihood of difficulties 

in meeting instream flow requirements.  It should be noted however the 

requirements are established as a weekly flow regime, while flow values from 

the simulation are essentially monthly averages.  It is very likely that with 

increased precision in the analysis and careful management by system 
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operators, the City will be able to continue to meet the flow requirements.  The 

intent of this analysis is to draw light to the fact that increased attention is 

likely to be required under climate change conditions.  The goals of the 

instream flow requirement were established assuming historic conditions 

would remain unchanged (SPU, 2000); these goals are likely to more difficult, 

though not impossible to meet under changing climate conditions. 

 

Gross yield 

Yield is the amount of water then can be supplied by a water resource system 

on a regular basis.  Firm yield is defined by Seattle Public Utilities as the level 

of demand that can be supplied by the system while maintaining a specified 

reliability standard (SPU 2001).  The reliability standard used by SPU, and the 

majority of water suppliers in the country is the 98% standard.  Using the 

98% standard, a water supply system should be able to provide the firm yield 

or greater 98% of the time.  For the 70 year simulations used in both the 

historic and GCM based ensembles, the use of this standard means there can 

be no more than a single failure in any simulation.  The firm yield is defined 

by the single event which causes the second shortfall.  SPU has traditionally 

evaluated the system’s firm yield using the CUE model with weekly 

streamflows (SPU 1999b).  The use of monthly average flows, as in this 

research, is expected to modestly increase the simulated yield of the system by 

smoothing over unsustained low flow periods.  The yield calculated using 

monthly averaged flows will provide a reasonable estimate of the direction and 

magnitude of the projected impacts from climate change, but will not 

necessarily be equivalent to the firm yield assessed with observed weekly 

flows. The two versions firm yield should therefore not be compared directly. 

The term gross yield will hereafter be used to refer to the system yield 

calculated with monthly average flows, while firm yield will retain its 

traditional definition. 
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The gross yield is evaluated using the CUE model and each of the three 

historic condition estimators, and each of the four GCMs at the years 2000, 

2020, and 2040 (Table 5.2).  The GCM ensemble value is derived by fitting a 

best fit trend to each GCM, the slope of the fit line represents the absolute 

change in gross yield per year.  The absolute trend is converted to relative 

terms by dividing by the GCMs year 2000 estimate.  The four relative trends 

are then averaged to determine the GCM ensemble rate of change of gross 

yield.  Trend values are expressed as a value per decade in order to better 

reflect the precision of this estimate.  Using this approach, the rate of change 

of gross yield for the Seattle water supply system is a decline on the order of 

6.1 MGD or 3.4% per decade. 

 
Table 5.2 – Gross yield estimates for the Seattle water supply system.  

(all values MGD) Historic 2000 2020 2040 

SPU 178    
DHSVM 175    
IRI 183    

Historic 
Ensemble 

179    
Trend in 
MGD per 
decade 

Relative 
trend 
per 

decade 

ECHAM4  181 150 160 -5.3 -2.9% 
HadCM3  172 159 135 -9.3 -5.4% 
GFDL_R30  180 176 157 -5.8 -3.2% 
PCM  198 178 181 -4.3 -2.1% 

GCM Ensemble  183 166 158 -6.1 -3.4% 
 

An alternative to the method shown in Table 5.2 is to plot the gross yield for 

each decade of each GCM over time and use a linear regression fit to the 12 

data points.  The slope of the regression line is equivalent to the rate of change 

in gross yield (Figure 5.11). 
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Figure 5.11 – Change in gross yield of the Seattle water supply system as 
determine using a suite of four GCMs. 

 

Fitting a linear trend line to the scatter plot results in a trend line with a slope 

of -0.61; this corresponds to a decline in gross yield of 6.1 MGD per decade.  

The uncertainty bounds around the fitted curve can be estimated by using a t-

distribution and a confidence limit of 95% (alpha = 0.25).  The relatively wide 

envelope, even for year 2000 conditions, belies the large degree of uncertainty 

associated with using global GCM climate data for local scale water resource 

impact assessments.  The uncertainty increases as the estimate moves further 

into the future, but an average value over the 40 years is ±23 MGD. 

 

The uncertainty boundary is calculated using the t-distribution statistics for 

confidence intervals around each group of four points.  In this context 

however, the regions defined by these limits is not a true confidence limit.  The 
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term confidence limit implies that the GCM based points are a sample that is 

used to define some underlying distribution.  In this case there is no 

presumption of a distribution, ideally all four point would be coincident at 

each decade.  The spread in each decade’s estimate shows the lack of strong 

agreement between climate models, a measure of uncertainty in the future.  

The uncertainty boundaries are a method for describing this spread using 

standardized terminology for the limits of the uncertainty. 

 

Table 5.3 – Uncertainty range for rate of change in gross yield 

Rate of Change per Decade 
GCM Ensemble Average -3.4%
75% uncertainty boundary -2.4% to -4.4% 
90% uncertainty boundary -2.0% to -4.8% 
98% uncertainty boundary -1.2% to -5.6% 

 

This approach is further refined by using the 12 GCM yield estimates to 

calculate a rate of change as a percentage of the current yield.  The 12 points 

are converted to a percentage change from the year 2000 values and plotted as 

a scatter plot as shown in Figure 5.12.  The rate of change is calculated by 

fitting a linear regression to the data.  The slope parameter of the regression 

define the rate of change, -3.4% per decade. 

 

A test on the significance of the slope parameter shows the term to be 

statistically significant to the 97% confidence limit.  This implies that we can 

be 97% confident that the slope of the line is representative of the data, but 

does not reflect upon the certainty of the original GCM data.  Using a t-

distribution to test for confidence in the regression parameters (Kottegoda and 

Rosso, 1997), we calculate the uncertainty boundaries associated with the rate 

of change in gross yield (Table 5.3).  These ranges reflect the ability to estimate 

a rate given the spread seen in the different GCMs, but to not reflect the full 

uncertainty of the process.  The values from Table 5.3 are presented 

graphically along with the underlying GCM data in Figure 5.12.  
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Figure 5.12 – Rate of change in gross yield as a percent of year 2000 value from 
each GCM.  The rate is determined by the slope of a regression line fit to the 12 
GCM based estimates. 

 
The uncertainty boundaries shown as the blue region in Figure 5.12 reflect the 

range of values caused by the disagreement between GCMs.  Given that the 

suite of GCMs produce this range, and assuming that the range is 

representative of the combined effect of many different uncertainties, we can 

use this approach to aggregate many of the uncertainties associated with the 

3-stage modeling approach into a single comprehensive impact assessment.  

The best estimate of the impacts of climate change is defined by the ensemble 

average or the trend line with the degree of certainty in this estimate being 

reflected in the uncertainty boundaries.   

 

Cumulative System Uncertainty 

 
Uncertainty from the multiple levels of analysis can be expressed in common 

terms by incorporating multiple data sources and processing options.  

Carrying all the options through the complete chain of models provides a 
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range of evaluations with which the uncertainty in the process can be 

quantified.  For example, the uncertainty created by using a hydrologic model 

to derive streamflow data can be expressed in terms of a system metric.  This 

is done by comparing system model output from a modeled streamflow data 

set with that from on observed streamflow data set.  The principal components 

of uncertainty in the climate impact assessment performed on the Seattle 

system can be expressed in terms of the system metric Gross Yield.  The 

following values are calculated from the point estimates for gross yield shown 

in Figure 5.11: 

 

• Difference between SPU and DHSVM estimators of current conditions 

reveals uncertainty caused by hydrologic model:  ~3 MGD 

• Metrics are defined using the operations model, making the uncertainty 

in the results essentially zero. However, the ability to codify dynamic 

operating policies is imperfect which adds some uncertainty to the 

systems evaluation.  The uncertainty in this stage can only be 

estimated and is assumed to be roughly half that of the hydrology 

model or ~1.5 MGD. 

• Difference between (SPU or DHSVM) and IRIDqgt shows uncertainty 

from  quantile mapping downscaling: ~7 MGD 

• Spread in GCM values reveals initial uncertainty from using GCM 

representation of climate at approximately present conditions (year 

2000): ~11 MGD 

• Spread in GCM points at future intervals demonstrates how uncertainty 

in climate models increases with time.  Additional uncertainty added by 

time: year 2020 +3 MGD, year 2040 +8 MGD 

 

The cumulative nature of the these uncertainties is summarized in Figure 5.13 

in more general terms by converting all the values to a percentage of the 

current yield estimate and plotting as a cumulative function.  The figure 

demonstrates that our ability to assess the firm yield of the system 40 years 
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into the future using climate change scenarios has a substantial margin of 

error, approximately ±20%.  The width of this range does not imply that we are 

unable to estimate the scale and direction of climate change impacts, but 

simply that the results cannot be stated with 100% certainty.  It is worth 

noting that this situation is true of all water resource system evaluation, 

including those that do not include climate change information.   
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Figure 5.13 – Accumulation of uncertainty in the 3-stage modeling process.  
Uncertainties are expressed as a percentage of a final system metric Gross Firm 
Yield, the exact value of which is unknowable. 

 

It is clear from Figure 5.13 that GCMs present the greatest source of 

uncertainty.  The effects of GCM uncertainty alone can be quantified by 

examining the hydrologic metrics used to measure the impacts of climate 

change.  The series of cdfs for combined inflows to the system storage 

reservoirs, shown in Figure 5.8, represent a most likely estimate at each 

decade.  The uncertainty in GCMs can be represented by uncertainty 
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boundaries calculated using a t-distribution based on the mean and standard 

deviation of the four GCM scenarios. The approach has been demonstrated for 

the gross yield of the system, but is also applicable to any system metric.  

Figure 5.14 shows the uncertainty boundaries associated with the estimates of 

September active storage. 
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Figure 5.14 – Active system storage in September with uncertainty boundaries at 
the 95% level. 

 

Opportunities to improve on the uncertainties in the impact assessment 

process are limited.  Climate models are being improved, but a straightforward 

consensus between modeling centers is unlikely in the near future.  Use of 

multiple GCMs and the ensemble approach is likely to remain the best option 

in the near future.  The certainty of statistical downscaling is limited by the 

correlation between regional and station values.  This limitation is a physical 
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reality and cannot be corrected by statistical methods.  Using regional climate 

models (RCM) for downscaling may improve on the process, but to date have 

not been shown to provide a significant increase in skill over statistical 

methods (Murphy, 1990).  Additionally, use of RCMs for downscaling would 

reduce the capacity for performing the analysis using a GCM ensemble 

approach due to the increased computation time required for using RCMs.  

Uncertainties in the hydrologic and operations models are small relative to the 

other stages.  These uncertainties are present in all system evaluations with or 

without climate data and are also unlikely to decrease in the future. 

 

The most effective method form reducing the range on the uncertainty 

boundaries seen in Figure 5.12 and in Figure 5.14 is to increase the number 

of ensemble members.  Additional GCMs using different emissions scenarios, 

alternative downscaling techniques, and assessment at 10 rather than 20 year 

intervals, would increase the number of data sets used to create the ensemble 

averages and reduce the uncertainty associated with the impact estimate.  The 

number of ensemble members incorporated in the estimate is only limited by 

the time and resources available to perform the assessment. 
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6 Conclusions 
 

The three principal accomplishments of this research are: 

• Development of methods for incorporating climate information into water 

supply management; 

• Evaluation of the uncertainty present when using climate information; 

• Assessment of local impacts of climate change. 

This chapter summarizes and reviews the major findings under each of these 

three categories. 

 

Analysis Methods 
Assessing impacts of climate change on municipal water supplies requires the 

uses of a series of complex, deterministic, simulation tools.  These range from 

global circulation models, to local-scale hydrology and reservoir operation 

models.  Many options and methods exist to transfer data from one model to 

the next.  This research presents a method that translates climate information 

from the global scale into impacts at the local scale.  The recommended method 

is characterized by the key decisions made at each level of analysis and at each 

transfer point. 

 

General Circulation Models 

GCMs, and the atmospheric composition forcing scenarios that drive them, 

represent the greatest degree of uncertainty in the climate change impact 

assessment process.  Using multiple GCMs is the best approach for addressing 

this uncertainty.  Using multiple GCMs captures a range of potential future 

climate states and allows for a more comprehensive statement of the 

uncertainties associated with this analysis.  The average of two to four GCM 

grid cells surrounding the area of interest provides a good representation of 

regional climate. 
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Downscaling 

To preserve the ability to use traditionally accepted measures of system 

performance, it is necessary to expand a short time series representing decadal-

scale climate change into a longer record that contains the spatial and temporal 

characteristics of the historic climate record.  The downscaling process 

developed in this research captures the climate variables’ distributions and 

event frequencies from a GCM and applies them to the monthly time series seen 

in the historic record. It thereby creates a climate change scenario suitable for 

water resource impact evaluation.  The monthly sequences created by spatial 

downscaling can then be temporal disaggregated to daily weather values 

through a process of selective re-sampling of the historic record.  Hydrologic 

results, created with the downscaled climate sequences should be aggregated to 

a minimum of weekly values to avoid artifacts of the downscaling process from 

being incorporated into the impact assessment. 

 

Hydrologic and systems modeling 

Hydrologic and system operation modeling for climate change impact studies 

should be performed using identical procedures to those used for system 

assessments based on historic data.  The climate change signal is captured in 

the downscaling process, and no special consideration is necessary for the 

hydrologic or system simulation.  The use of differing approaches for climate 

change studies may mask or otherwise complicate the appearance of climate 

change impacts in the conclusions. 

 

Ensemble results evaluation  

The use of multiple GCMs provides an opportunity to assess the impacts of 

climate change based on a “consensus opinion” of the various climate models 

incorporated.  System metrics calculated from each GCM individually provide 

insight into the many possible future scenarios.  The average result of all GCMs 

examined provides a central case which may be viewed as a “most likely” 
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scenario based on the consensus results of the GCMs.  The spread of the GCM 

data points around the ensemble average provides a measure of the uncertainty 

in this “most likely” estimate.  The amount of uncertainty in the process makes 

evaluation of absolute values of the metrics questionable.  However, using the 

ensemble approach allows for a clear signal of the amplitude and rate of change 

in the system metrics.   

 

Uncertainty  
Uncertainty exists at every level of analysis and in every data source.  The 

degree to which this uncertainty affects the outcome of an impact evaluation 

varies widely.  It is important to recognize that many of the same uncertainties 

exist in the traditional, historic record based water resource system 

evaluations.  These uncertainties are not necessarily significant enough to 

mask the underlying trends or scale of impacts, but simply obscure our ability 

to identify the exact magnitude and timing of future events. 

 

Impacts of Climate Change on Seattle’s Water Supply System 
The effects of a changing climate on the water resources of the Seattle 

metropolitan area have been quantified according to four metrics.  Many 

additional metrics are possible, and could be evaluated using the techniques 

developed as a part of this research.  The selected metrics are intended to 

provide a cross section of impacts for different sectors affected by climate 

change.   

 

April snowpack  

Spring snowpack is a measure of the natural impoundment of water, upon 

which the Seattle water supply is largely dependent.  Summer flows provided by 

snowmelt also serve an important ecological role in the life cycle of several 

Salmonid species in the region.  This research shows the quantity of snow 
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accumulated, as of April of each year is likely to decrease significantly by the 

decades surrounding 2040.   The four GCM ensemble results reveal the average 

annual maximum snow water equivalent is likely to decrease by as much as 

50% from the historic norm by 2040.  This decrease is accompanied by a 

modest shift towards peak snowpack occurring earlier in the year, thereby 

lengthening the summer drawdown period.  The frequency of low snow years, as 

measured by our current standard is seen to increase significantly. 

 

Summer reservoir inflows and probability of fall storage levels 

The loss of winter and spring snow pack is expected to affect the volume of 

water flow into the major storage reservoirs on the Cedar and Tolt rivers.  The 

combined inflows to the Cedar and Tolt reservoirs from June 1st to September 

30th are expected to decrease at an average rate of 6% per decade.  By the 

2040s, this will represent a loss of approximately 5.2 thousand acre-feet over 

the four month period.  This loss in supply is approximately equivalent to an 

increase in demand of 14 MGD over the same period.  The median value of total 

water in the Cedar and Tolt reservoirs as of September is projected to decrease 

by 7.3 thousand acre-feet between the simulated year 2000 and year 2040 

conditions. 

 

Instream flow requirements for the Cedar River at Landsburg 

The loss of water in storage has the potential to impact the ability of system 

managers to meet agreed upon instream flow requirements for habitat 

protection.  However, under a scenario of a baseline demand of 150 MGD the 

ability of the city to meet instream flows shows little impact from the effects of 

climate change.  The ability to meet the “normal” instream flow requirements is 

seen to show a slight decrease, while the change in the likelihood of 

experiencing “critical” low flows is insignificant.  
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Gross yield of the complete system 

The gross yield represents the most aggregated of potential climate impacts.  

The trend seen in the evaluation of gross yield is a gradual decrease in available 

water over the next 40-50 years.  The expected magnitude if this decrease is on 

the order of 3.4% per decade, dropping to approximately 86.4% of the current 

yield by 2040. The uncertainty created by the range of GCM based 

representations of the future is described as an envelope around the impact 

estimate.  At the 90% confidence level, the uncertainty envelope adds an error 

term of ±1.4% to the projected change in gross yield.  We can state with a high 

degree of confidence that the gross yield will decline by approximately 20 MGD.  

The exact timing of this decrease is less certain, but is expected to be in the 

range of the next 30 to 60 years.    

 

Future Research  
Several significant impacts of climate change to the Seattle water supply have 

been identified.  The expected changes however, do not endanger Seattle’s 

ability to provide water to the region.  With proper planning and preparation,  

the city will be able to adapt to these changes and continue to reliably provide 

water to their service population while maintaining the aquatic habitat within 

the city’s supply basins.  The information from this research will be a valuable 

asset for this planning process.  Additional research that will improve the city’s 

ability to prepare of climate change includes: 

 

• The incorporation of additional downscaling techniques and emission 

scenarios to better define the uncertainty in the final system metrics. 

• The use of new or improved GCMs as they become available. 

• The inclusion of climate based demand functions within the 

operations model to produce a more realistic simulation of future, 

altered climate scenarios. 
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• The investigation of possible mitigation strategies through changes in 

system operation rules and configuration.  These strategies might 

include the use of more flexible reservoir rule curves that take 

advantage of improved forecasting of snowpack and streamflows.   

• An evaluation of impacts of climate change on flood event frequency 

in addition to drought frequency. 
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Appendix A: Summary of Quantile Map Downscaling Methodology 
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Appendix B: Location of GCM Output Cells Used to Represent the PNW 

 
Map B-1  CCCma CGCM2 grid points used to represent the Pacific Northwest 
regional climate for hydrology simulation in Seattle water supply basins. 
 
Grid Cell index Latitude  

(decimal degrees) 
Longitude  
(decimal degrees) 

3653 50.0995 236.0000 
3654 50.0995 240.0000 
3556 46.3886 236.0000 
3557 46.3886 240.0000 
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Map B-2 CSIRO Mark2 grid points used to represent the Pacific Northwest 
regional climate for hydrology simulation in Seattle water supply basins. 
 
Grid Cell index Latitude  

(decimal degrees) 
Longitude  
(decimal degrees) 

2795 49.3779 236.0000 
2796 49.3779 241.0000 
2731 46.1924 236.0000 
2732 46.1924 241.0000 
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Map B-3 NCAR’s CSM1.3 grid points used to represent the Pacific Northwest 
regional climate for hydrology simulation in Seattle water supply basins. 
 
Grid Cell index Latitude  

(decimal degrees) 
Longitude  
(decimal degrees) 

6230 46.0447 239.0000 
6358 48.8352 239.0000 
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Map B-4 Max Planck Institute’s ECHAM4 model grid points used to represent 
the Pacific Northwest regional climate for hydrology simulation in Seattle water 
supply basins. 
 
Grid Cell index Latitude  

(decimal degrees) 
Longitude  
(decimal degrees) 

1877 48.8352 236.0000 
1878 48.8352 239.0000 
2005 46.0447 236.0000 
2006 46.0447 239.0000 
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Map B-5 GFDL R30 model grid points used to represent the Pacific Northwest 
regional climate for hydrology simulation in Seattle water supply basins. 
 
Grid Cell index Latitude  

(decimal degrees) 
Longitude  
(decimal degrees) 

5920 48.0733 236.0000 
5921 48.0733 240.0000 
5824 45.8374 236.0000 
5825 45.8374 240.0000 
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Map B-6 HadCM3 model grid points used to represent the Pacific Northwest 
regional climate for hydrology simulation in Seattle water supply basins. 
 
Grid Cell index Latitude  

(decimal degrees) 
Longitude  
(decimal degrees) 

1696 47.5000 236.0000 
1697 47.5000 240.0000 
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Map B-7 PCM1.1 model grid points used to represent the Pacific Northwest 
regional climate for hydrology simulation in Seattle water supply basins. 
 
Grid Cell index Latitude  

(decimal degrees) 
Longitude  
(decimal degrees) 

6229 46.0447 236.0000 
6230 46.0447 239.0000 
6357 48.8352 236.0000 
6358 48.8352 239.0000 
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Appendix C: GCM projected Climate trends, downscaled to station 
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Snoqualmie Falls 
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Stampede Pass 
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Appendix D: GCM Simulated Change in Annual Climate Patterns 



 169



 170



 171



 172



 173



 174



 175

 



 176

Appendix E: GCM based, average annual inflows to S.F.Tolt Reservoir 

 



 177

 



 178

 



 179

 



 180

 



 181

 



 182

 



 183

 



 184

Appendix F:  DHSVM Configuration Parameters 

###############################################################################
# 
# DHSVM INPUT FILE FORMAT 
###############################################################################
# 
# The following is the control input for a  DHSVM model of the South Fork 
# of the Tolt River Basin, King, County Washington 
#  
# This input file is part of the hydrologic modeling being performed as a part 
# of the UW-SPU water resource impacts of climate change project. 
# Some values of 'physical' parameters in this file are different than the  
# traditional DHSVM values.  It is likey that these changes were a part of 
# the calibration process and are intentional.  Questions regarding this file  
# and its associated input files can be directed to Matthew Wiley.  
# mwwiley@u.washington.edu  -or-  Matthew@Wiley.net 
# 
###############################################################################
# 
# OPTIONS SECTION  
############################################################################### 
[OPTIONS]                                  
Format               = BIN                 
Extent               = BASIN               
Radiation            = INLINE              
Gradient             = WATERTABLE          
Sensible Heat Flux   = FALSE               
Interpolation        = VARCRESS                                                      
Flow Routing         = NETWORK             
MM5                  = FALSE     
QPF                  = FALSE       
Prism                = TRUE         
Shading              = TRUE            
Outside              = TRUE            
Rhoverride           = FALSE            
Precipitation Source = STATION             
Wind Source          = STATION            
Snotel               = TRUE    
 
#################CANOPY RADIATION METHOD########### 
# Method for calculating radiation attenuation  
# throught the canopy: either FIXED or VARIABLE 
 
Canopy radiation attenuation mode = FIXED 
 
################### DATA PATHS ###################### 
 
PRISM DATA EXTENSION = .prism 
Prism Data Path = ./input/PrismMap 
SHADING DATA EXTENSION = bin 
Shading Data Path = ./input/Shadow 
Skyview Data Path = ./input/SkyView.bin 
 
################ VARIABLE CRESSMAN INTERPOLATION  
 
Cressman Radius        =  10            
Cressman Stations      =   4            
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################ LAPSE RATES ############################ 
 
Temperature Lapse Rate   = VARIABLE               # CONSTANT or VARIABLE 
Precipitation Lapse Rate = CONSTANT               # CONSTANT or VARIABLE 
 
############################################################################### 
# MODEL AREA SECTION 
############################################################################### 
[AREA]                                     
Coordinate System    =  UTM                
Extreme North        =  5289050           
Extreme West         =  596150            
Center Latitude      =  47.98          
Center Longitude     =  -121.65         
Time Zone Meridian   =  0.0            
Number of Rows       =  64             
Number of Columns    =  109           
Grid spacing         =  150         
 
############################################################################### 
# TIME SECTION 
############################################################################### 
[TIME]                                    # Model period 
Time Step            =  3                 # Model time step (hours) 
Model Start          =  10/01/1928-00     # Model start time (MM/DD/YYYY-HH) 
Model End            =  10/01/1999-00     # Model end time (MM/DD/YYYY-HH) 
 
############################################################################### 
# CONSTANTS SECTION 
############################################################################### 
[CONSTANTS]                            
Ground Roughness     = 0.02           
Snow Roughness       = 0.01            
Rain Threshold       = -1.5            
Snow Threshold       =  0.0         
Snow Water Capacity  =  0.008          
Reference Height     =  50.0            
Rain LAI Multiplier  =  0.0001          
Snow LAI Multiplier  = 0.0005           
Min Intercepted Snow = 0.005          
Outside Basin Value  = 0                
 
################ LAPSE RATES ################################################# 
Temperature Lapse Rate   = N/A           
Precipitation Lapse Rate = N/A   
 
############################################################################### 
# TERRAIN INFORMATION SECTION 
############################################################################### 
[TERRAIN]                                 # Terrain information 
DEM File             = ./input/tolt.elev.bin 
Basin Mask File      = ./input/tolt.mask.bin 
 
############################################################################### 
# ROUTING SECTION 
############################################################################### 
[ROUTING]                                
################ STREAM NETWORK  
Stream Map File      = ./input/tolt.stream-map.dat 
Stream Network File  = ./input/tolt.stream-network.dat 
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Stream Class File    = ./input/tolt.stream-class.dat 
 
############################################################################### 
# METEOROLOGY SECTION  
############################################################################### 
[METEOROLOGY]                        
Number of Stations = 2      
Station Name 1      = STARTUP               
North Coordinate 1  = 5302278.               
East Coordinate 1   = 595976.              
Elevation 1         = 52.0            
Station File 1      = //home2/spu_cc/met/HIST15-03/met.historic.STARTUP 
 
Station Name 2      = SNOQUALMIE            
North Coordinate 2  = 5265727.0           
East Coordinate 2   = 587528.0          
Elevation 2         = 134.1          
Station File 2      = //home2/spu_cc/met/HIST15-03/met.historic.SNOQUALMIE 
 
 
############################################################################### 
# SOILS INFORMATION SECTIONB  
############################################################################### 
[SOILS]                             
Soil Map File      = ./input/tolt.soil95.bin 
Soil Depth File      = ./input/tolt.soildepth95.bin  
Number of Soil Types = 18                  
 
################ SOIL 1  
Soil Description       1 = SAND  
Lateral Conductivity   1 = 0.01       
Exponential Decrease   1 = 3.0         
Maximum Infiltration   1 = 2.0e-4        
Surface Albedo         1 = 0.1        
Number of Soil Layers  1 = 3        
Porosity               1 =  .43 .43 .43 
Pore Size Distribution 1 =  .24 .24 .24 
Bubbling Pressure      1 =  .07 .07 .07  
Field Capacity         1 =  .08 .08 .08  
Wilting Point          1 =  .03 .03 .03  
Bulk Density           1 = 1492. 1492. 1492.  
Vertical Conductivity  1 = 0.01 0.01 0.01 
Thermal Conductivity   1 = 7.114  6.923 6.923 
Thermal Capacity       1 = 1.4e6  1.4e6 1.4e6 
 
################ SOIL 2  
Soil Description       2 = LOAMY SAND     
Lateral Conductivity   2 = 0.01      
Exponential Decrease   2 = 3.0       
Maximum Infiltration   2 = 6.0e-5       
Surface Albedo         2 = 0.1        
Number of Soil Layers  2 = 3        
Porosity               2 =  .42 .42 .42 
Pore Size Distribution 2 =  .35 .35 .45 
Bubbling Pressure      2 =  .09 .09 .09 
Field Capacity         2 =  .15 .15 .15 
Wilting Point          2 =  .06 .06 .06 
Bulk Density           2 = 1520. 1520. 1520. 
Vertical Conductivity  2 =  0.01 0.01 0.01 
Thermal Conductivity   2 = 7.114  6.923 7.0 
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Thermal Capacity       2 = 1.4e6  1.4e6 1.4e6 
 
################ SOIL 3  
Soil Description       3 = SANDY LOAM       
Lateral Conductivity   3 = 0.01      
Exponential Decrease   3 = 3.0        
Maximum Infiltration   3 = 3e-5       
Surface Albedo         3 = 0.1        
Number of Soil Layers  3 = 3        
Porosity               3 =  .6 .6 .6 
Pore Size Distribution 3 =  .5 .6 .7 
Bubbling Pressure      3 =  .15 .15 .15 
Field Capacity         3 =  .21 .21 .21 
Wilting Point          3 =  .09 .09 .09 
Bulk Density           3 = 1569. 1569. 1569. 
Vertical Conductivity  3 = 0.01 0.01 0.01 
Thermal Conductivity   3 = 7.114  6.923 7.0  
Thermal Capacity       3 = 1.4e6  1.4e6 1.4e6 
 
################ SOIL 4  
Soil Description       4 = SILTY LOAM    
Lateral Conductivity   4 = 0.01      
Exponential Decrease   4 = 3.0        
Maximum Infiltration   4 = 3e-5       
Surface Albedo         4 = 0.1        
Number of Soil Layers  4 = 3        
Porosity               4 =  .46 .46 .46 
Pore Size Distribution 4 =  .26 .26 .26 
Bubbling Pressure      4 =  .21 .21 .21 
Field Capacity         4 =  .32 .32 .32 
Wilting Point          4 =  .12 .12 .12 
Bulk Density           4 = 1419. 1419. 1419. 
Vertical Conductivity  4 =  0.01 0.01 0.01 
Thermal Conductivity   4 = 7.114  6.923 7.0 
Thermal Capacity       4 = 1.4e6  1.4e6 1.4e6 
 
################ SOIL 5  
Soil Description       5 = SILT 
Lateral Conductivity   5 = 0.01      
Exponential Decrease   5 = 3.0        
Maximum Infiltration   5 = 3e-5       
Surface Albedo         5 = 0.1        
Number of Soil Layers  5 = 3        
Porosity               5 =  .52 .52 .52 
Pore Size Distribution 5 =  .33 .33 .33 
Bubbling Pressure      5 =  .25 .25 .25 
Field Capacity         5 =  .28 .28 .28 
Wilting Point          5 =  .08 .08 .08 
Bulk Density           5 = 1280. 1280. 1280. 
Vertical Conductivity  5 =  0.01 0.01 0.01 
Thermal Conductivity   5 = 7.114  6.923 7.0 
Thermal Capacity       5 = 1.4e6  1.4e6 1.4e6 
 
################ SOIL 6  
Soil Description       6 = LOAM      
Lateral Conductivity   6 = 0.01      
Exponential Decrease   6 = 3.0        
Maximum Infiltration   6 = 1e-5       
Surface Albedo         6 = 0.1        
Number of Soil Layers  6 = 3        
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Porosity               6 =  .43 .43 .43 
Pore Size Distribution 6 =  .19 .19 .19 
Bubbling Pressure      6 =  .11 .11 .11 
Field Capacity         6 =  .29 .29 .29 
Wilting Point          6 =  .14 .14 .14 
Bulk Density           6 = 1485. 1485. 1485. 
Vertical Conductivity  6 = 0.01 0.01 0.01 
Thermal Conductivity   6 = 7.114  6.923 7.0 
Thermal Capacity       6 = 1.4e6  1.4e6 1.4e6 
 
################ SOIL 7  
Soil Description       7 = SANDY CLAY LOAM  
Lateral Conductivity   7 = 0.01      
Exponential Decrease   7 = 3.0        
Maximum Infiltration   7 = 1e-5       
Surface Albedo         7 = 0.1        
Number of Soil Layers  7 = 3        
Porosity               7 =  .39 .39 .39 
Pore Size Distribution 7 =  .12 .12 .12 
Bubbling Pressure      7 =  .29 .29 .29 
Field Capacity         7 =  .27 .27 .27 
Wilting Point          7 =  .17 .17 .17 
Bulk Density           7 = 1600. 1600. 1600. 
Vertical Conductivity  7 =  0.01 0.01 0.01 
Thermal Conductivity   7 = 7.114  6.923 7.0  
Thermal Capacity       7 = 1.4e6  1.4e6 1.4e6 
 
################ SOIL 8  
Soil Description       8 = SILTY CLAY LOAM       
Lateral Conductivity   8 = 0.01      
Exponential Decrease   8 = 3.0        
Maximum Infiltration   8 = 3e-5       
Surface Albedo         8 = 0.1        
Number of Soil Layers  8 = 3        
Porosity               8 =  .48 .48 .48 
Pore Size Distribution 8 =  .13 .13  .13 
Bubbling Pressure      8 =  .34 .34 .34 
Field Capacity         8 =  .36 .36 .36 
Wilting Point          8 =  .21 .21 .21 
Bulk Density           8 = 1381. 1381. 1381. 
Vertical Conductivity  8 =  0.01 0.01 0.01 
Thermal Conductivity   8 = 7.114  6.923 7.0 
Thermal Capacity       8 = 1.4e6  1.4e6 1.4e6 
 
################ SOIL 9  
Soil Description       9 = CLAY LOAM       
Lateral Conductivity   9 = 0.01      
Exponential Decrease   9 = 3.0        
Maximum Infiltration   9 = 1e-5       
Surface Albedo         9 = 0.1        
Number of Soil Layers  9 = 3        
Porosity               9 =  .46 .46 .46 
Pore Size Distribution 9 =  .12 .12 .12 
Bubbling Pressure      9 =  .26 .26 .26 
Field Capacity         9 =  .31 .31 .31 
Wilting Point          9 =  .23 .23 .23 
Bulk Density           9 = 1600. 1600. 1600. 
Vertical Conductivity  9 =  0.01 0.01 0.01 
Thermal Conductivity   9 = 7.114  6.923 7.0 
Thermal Capacity       9 = 1.4e6  1.4e6 1.4e6 
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################ SOIL 10  
Soil Description       10 = SANDY CLAY 
Lateral Conductivity   10 = 0.01      
Exponential Decrease   10 = 3.0        
Maximum Infiltration   10 = 1e-5       
Surface Albedo         10 = 0.1        
Number of Soil Layers  10 = 3        
Porosity               10 =  .41 .41 .41  
Pore Size Distribution 10 =  .08 .08 .08 
Bubbling Pressure      10 =  .29 .29 .29 
Field Capacity         10 =  .31 .31 .31 
Wilting Point          10 =  .23 .23 .23 
Bulk Density           10 = 1565. 1565. 1565. 
Vertical Conductivity  10 =  0.01 0.01 0.01 
Thermal Conductivity   10 = 7.114  6.923 7.0 
Thermal Capacity       10 = 1.4e6  1.4e6 1.4e6 
 
################ SOIL 11  
Soil Description       11 = SILTY CLAY   
Lateral Conductivity   11 = 0.01      
Exponential Decrease   11 = 3.0        
Maximum Infiltration   11 = 1e-5       
Surface Albedo         11 = 0.1        
Number of Soil Layers  11 = 3        
Porosity               11 =  .49 .49 .49 
Pore Size Distribution 11 =  .1 .1 .1 
Bubbling Pressure      11 =  .34 .34 .34 
Field Capacity         11 =  .37 .37 .37 
Wilting Point          11 =  .25 .25 .25 
Bulk Density           11 = 1346. 1346. 1346. 
Vertical Conductivity  11 =  0.01 0.01 0.01  
Thermal Conductivity   11 = 7.114  6.923 7.0 
Thermal Capacity       11 = 1.4e6  1.4e6 1.4e6 
 
################ SOIL 12  
Soil Description       12 = CLAY 
Lateral Conductivity   12 = 0.01      
Exponential Decrease   12 = 3.0        
Maximum Infiltration   12 = 1e-5       
Surface Albedo         12 = 0.1        
Number of Soil Layers  12 = 3        
Porosity               12 =  .47 .47 .47 
Pore Size Distribution 12 =  .08 .08 .08 
Bubbling Pressure      12 =  .37 .37 .37 
Field Capacity         12 =  .36 .36 .36 
Wilting Point          12 =  .27 .27 .27 
Bulk Density           12 = 1394. 1394. 1394 
Vertical Conductivity  12 =  0.01 0.01 0.01 
Thermal Conductivity   12 = 7.114  6.923 7.0 
Thermal Capacity       12 = 1.4e6  1.4e6 1.4e6 
 
################ SOIL 13  
Soil Description       13 = ORGANIC (as loam) 
Lateral Conductivity   13 = 0.01      
Exponential Decrease   13 = 3.0        
Maximum Infiltration   13 = 1e-5       
Surface Albedo         13 = 0.1        
Number of Soil Layers  13 = 3        
Porosity               13 =  .43 .43 .43 
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Pore Size Distribution 13 =  .19 .19 .19 
Bubbling Pressure      13 =  .11 .11 .11 
Field Capacity         13 =  .29 .29 .29 
Wilting Point          13 =  .14 .14 .14 
Bulk Density           13 = 1485. 1485. 1485. 
Vertical Conductivity  13 =  0.01 0.01 0.01  
Thermal Conductivity   13 = 7.114  6.923 7.0 
Thermal Capacity       13 = 1.4e6  1.4e6 1.4e6 
 
################ SOIL 14  
Soil Description       14 = WATER (as clay) 
Lateral Conductivity   14 = 0.01      
Exponential Decrease   14 = 3.0        
Maximum Infiltration   14 = 1e-5       
Surface Albedo         14 = 0.1        
Number of Soil Layers  14 = 3        
Porosity               14 =  .47 .47 .47 
Pore Size Distribution 14 =  .08 .08 .08 
Bubbling Pressure      14 =  .37 .37 .37 
Field Capacity         14 =  .36 .36 .36 
Wilting Point          14 =  .27 .27 .27 
Bulk Density           14 = 1394. 1394. 1394. 
Vertical Conductivity  14 =  0.01 0.01 0.01 
Thermal Conductivity   14 = 7.114  6.923 7.0 
Thermal Capacity       14 = 1.4e6  1.4e6 1.4e6 
 
################ SOIL 15  
Soil Description       15 = BEDROCK    
Lateral Conductivity   15 = 0.01 
Exponential Decrease   15 = 3.0        
Maximum Infiltration   15 = 1e-5       
Surface Albedo         15 = 0.1        
Number of Soil Layers  15 = 3        
Porosity               15 =  .1 .1 .1 
Pore Size Distribution 15 =  .08 .08 .08 
Bubbling Pressure      15 =  .36 .36 .36 
Field Capacity         15 =  .05 .05 .05 
Wilting Point          15 =  .04 .04 .04 
Bulk Density           15 = 1650. 1650. 1650.0 
Vertical Conductivity  15 =  0.01 0.01 0.01 
Thermal Conductivity   15 = 7.114  6.923 7.0  
Thermal Capacity       15 = 1.4e6  1.4e6 1.4e6 
 
################ SOIL 16  
Soil Description       16 = OTHER  (as SCL) 
Lateral Conductivity   16 = 0.01      
Exponential Decrease   16 = 3.0        
Maximum Infiltration   16 = 1e-5       
Surface Albedo         16 = 0.1        
Number of Soil Layers  16 = 3        
Porosity               16 =  .39 .39 .39 
Pore Size Distribution 16 =  .12 .12 .12 
Bubbling Pressure      16 =  .29 .29 .29 
Field Capacity         16 =  .27 .27 .27 
Wilting Point          16 =  .17 .17 .17 
Bulk Density           16 = 1600. 1600. 1600. 
Vertical Conductivity  16 =  0.01 0.01 0.01 
Thermal Conductivity   16 = 7.114  6.923 7.0 
Thermal Capacity       16 = 1.4e6  1.4e6 1.4e6 
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################ SOIL 17  
Soil Description       17 = MUCK   
Lateral Conductivity   17 = 0.01      
Exponential Decrease   17 = 3.0        
Maximum Infiltration   17 = 1e-5       
Surface Albedo         17 = 0.23        
Number of Soil Layers  17 = 3        
Porosity               17 =  .47 .47 .47 
Pore Size Distribution 17 =  .08 .08 .08 
Bubbling Pressure      17 =  .37 .37 .37 
Field Capacity         17 =  .36 .36 .36 
Wilting Point          17 =  .27 .27 .27 
Bulk Density           17 = 1600. 1600. 1600 
Vertical Conductivity  17 =  0.05 0.05 0.05 
Thermal Conductivity   17 = 7.114  6.923 7.0 
Thermal Capacity       17 = 1.4e6  1.4e6 1.4e6 
 
################ SOIL 18  
Soil Description       18 = TALUS 
Lateral Conductivity   18 = 0.01       
Exponential Decrease   18 = 3.0         
Maximum Infiltration   18 = 2.0e-4        
Surface Albedo         18 = 0.1        
Number of Soil Layers  18 = 3        
Porosity               18 =  .80 .80 .80 
Pore Size Distribution 18 =  .65 .65 .65 
Bubbling Pressure      18 =  .01 .01 .01  
Field Capacity         18 =  .03 .03 .03  
Wilting Point          18 =  .03 .03 .03  
Bulk Density           18 = 1492. 1492. 1492.  
Vertical Conductivity  18 = 0.01 0.01 0.01 
Thermal Conductivity   18 = 7.114  6.923 6.923 
Thermal Capacity       18 = 1.4e6  1.4e6 1.4e6 
 
############################################################################### 
# VEGETATION INFORMATION SECTION 
############################################################################### 
[VEGETATION] 
Vegetation Map File        = ./input/tolt.veg.bin 
Number of Vegetation Types = 20    
 
################ VEGETATION 1  
Vegetation Description   1 = Evergreen Needleleaf   
Impervious Fraction      1 = 0.0 
Overstory Present        1 = TRUE   
Understory Present       1 = TRUE     
Fractional Coverage      1 = 0.9     
Hemi Fract Coverage      1 = 0.9 
Trunk Space              1 = 0.5        
Aerodynamic Attenuation  1 = 2.0        
Radiation Attenuation    1 = 0.15        
Max Snow Int Capacity    1 = 0.04  
Snow Interception Eff    1 = 0.6 
Mass Release Drip Ratio  1 = 0.4 
Height                   1 = 30.0 0.5 
Overstory Monthly LAI    1 = 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 
12.0 12.0 
Understory Monthly LAI   1 = 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 
Maximum Resistance       1 = 5000. 3000.   
Minimum Resistance       1 = 666.6 200.    
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Moisture Threshold       1 = 0.33 0.13  
Vapor Pressure Deficit   1 = 4000 4000  
Rpc                      1 = .108 .108 
Overstory Monthly Alb    1 = 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
0.20 0.20 
Understory Monthly Alb   1 = 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
0.20 0.20 
Number of Root Zones     1 = 3   
Root Zone Depths         1 = 0.10 0.25 0.40  
Overstory Root Fraction  1 = 0.20 0.40 0.40             
Understory Root Fraction 1 = 0.40 0.60 0.00   
 
Vegetation Description   2 = Evergreen Broadleaf  
Impervious Fraction      2 = 0.0 
Overstory Present        2 = TRUE      
Understory Present       2 = TRUE    
Fractional Coverage      2 = 0.9     
Trunk Space              2 = .5  
Aerodynamic Attenuation  2 = 1.5 
Radiation Attenuation    2 = 0.2 
Max Snow Int Capacity    2 = 0.003 
Snow Interception Eff    2 = 0.6 
Mass Release Drip Ratio  2 = 0.4 
Height                   2 = 30.0 0.5 
Impervious Fraction      2 = 0.0 
Overstory Monthly LAI    2 = 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 
10.0 10.0 
Understory Monthly LAI   2 = 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0  
Overstory Monthly alb    2 = 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
Understory Monthly alb   2 = 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
Maximum Resistance       2 = 5000. 3000. 
Minimum Resistance       2 = 666.6 666.6    
Moisture Threshold       2 = 0.33 0.13      
Vapor Pressure Deficit   2 = 4000  4000     
Rpc                      2 = .108 0.108    
Number of Root Zones     2 = 3      
Root Zone Depths         2 = 0.10 0.25 0.40    
Overstory Root Fraction  2 = 0.20 0.40 0.40     
Understory Root Fraction 2 = 0.40 0.60 0.00     
 
Vegetation Description   3 = Deciduous Needleleaf   
Impervious Fraction      3 = 0.0 
Overstory Present        3 = TRUE   
Understory Present       3 = TRUE     
Fractional Coverage      3 = 0.9     
Hemi Fract Coverage      3 = 0.9 
Trunk Space              3 = 0.5        
Aerodynamic Attenuation  3 = 2.0        
Radiation Attenuation    3 = 0.15        
Max Snow Int Capacity    3 = 0.04  
Snow Interception Eff    3 = 0.6 
Mass Release Drip Ratio  3 = 0.4 
Height                   3 = 30.0 0.5 
Overstory Monthly LAI    3 = 2.0 2.0 2.0 2.0 2.0 12.0 12.0 12.0 12.0 2.0 2.0 
2.0 
Understory Monthly LAI   3 = 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 2.0 2.0 2.0 
Maximum Resistance       3 = 5000. 3000.   
Minimum Resistance       3 = 666.6 200.    
Moisture Threshold       3 = 0.33 0.13  
Vapor Pressure Deficit   3 = 4000 4000  
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Rpc                      3 = .108 .108 
Overstory Monthly Alb    3 = 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
0.20 0.20 
Understory Monthly Alb   3 = 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
0.20 0.20 
Number of Root Zones     3 = 3   
Root Zone Depths         3 = 0.10 0.25 0.40  
Overstory Root Fraction  3 = 0.20 0.40 0.40             
Understory Root Fraction 3 = 0.40 0.60 0.00   
 
Vegetation Description   4 = Deciduous Broadleaf 
Impervious Fraction      4 = 0.0 
Overstory Present        4 = TRUE      
Understory Present       4 = TRUE    
Fractional Coverage      4 = 0.9     
Hemi Fract Coverage      4 = 0.9 
Trunk Space              4 = 0.5  
Aerodynamic Attenuation  4 = 1.5 
Radiation Attenuation    4 = 0.2 
Max Snow Int Capacity    4 = 0.003 
Snow Interception Eff    4 = 0.6 
Mass Release Drip Ratio  4 = 0.4 
Height                   4 = 30.0 0.5 
Overstory Monthly LAI    4 = 2.0 2.0 2.0 2.0 2.0 10.0 10.0 10.0 10.0 2.0 2.0 
2.0 
Understory Monthly LAI   4 = 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 2.0 2.0 2.0 
Maximum Resistance       4 = 5000. 3000. 
Minimum Resistance       4 = 666.6 666.6    
Moisture Threshold       4 = 0.33 0.13      
Vapor Pressure Deficit   4 = 4000  4000     
Rpc                      4 = .108 0.108 
Overstory Monthly Alb    4 = 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
0.20 0.20 
Understory Monthly Alb   4 = 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
0.20 0.20 
Number of Root Zones     4 = 3      
Root Zone Depths         4 = 0.10 0.25 0.40    
Overstory Root Fraction  4 = 0.20 0.40 0.40     
Understory Root Fraction 4 = 0.40 0.60 0.00     
 
Vegetation Description   5 = Mixed Forest 
Impervious Fraction      5 = 0.0 
Overstory Present        5 = TRUE        
Understory Present       5 = TRUE              
Fractional Coverage      5 = 0.8          
Hemi Fract Coverage      5 = 0.8 
Trunk Space              5 = 0.4            
Aerodynamic Attenuation  5 = 0.5           
Radiation Attenuation    5 = 0.2          
Max Snow Int Capacity    5 = 0.003     
Snow Interception Eff    5 = 0.6               
Mass Release Drip Ratio  5 = 0.4              
Height                   5 = 20.0 0.5       
Overstory Monthly LAI    5 = 2.0 2.0 2.0 2.0 2.0 6.0 6.0 6.0 6.0 2.0 2.0 2.0 
Understory Monthly LAI   5 = 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 2.0 2.0 2.0 
Maximum Resistance       5 = 5000. 600.   
Minimum Resistance       5 = 200. 200.     
Moisture Threshold       5 = 0.33 0.13      
Vapor Pressure Deficit   5 = 4000 4000      
Rpc                      5 = .108 .108 
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Overstory Monthly Alb    5 = 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 
0.15 0.15 
Understory Monthly Alb   5 = 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 
0.15 0.15 
Number of Root Zones     5 = 3       
Root Zone Depths         5 = 0.10 0.25 0.40    
Overstory Root Fraction  5 = 0.20 0.40 0.40       
Understory Root Fraction 5 = 0.40 0.60 0.00     
 
Vegetation Description   6 = Woodland  
Impervious Fraction      6 = 0.0 
Overstory Present        6 = TRUE        
Understory Present       6 = TRUE              
Fractional Coverage      6 = 0.8          
Hemi Fract Coverage      6 = 0.8 
Trunk Space              6 = 0.4            
Aerodynamic Attenuation  6 = 0.5           
Radiation Attenuation    6 = 0.2          
Max Snow Int Capacity    6 = 0.003     
Snow Interception Eff    6 = 0.6               
Mass Release Drip Ratio  6 = 0.4              
Height                   6 = 20.0 0.5       
Overstory Monthly LAI    6 = 2.0 2.0 2.0 2.0 2.0 6.0 6.0 6.0 6.0 2.0 2.0 2.0 
Understory Monthly LAI   6 = 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 2.0 2.0 2.0 
Maximum Resistance       6 = 5000. 600.   
Minimum Resistance       6 = 200. 200.     
Moisture Threshold       6 = 0.33 0.13      
Vapor Pressure Deficit   6 = 4000 4000      
Rpc                      6 = .108 .108 
Overstory Monthly Alb    6 = 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 
0.15 0.15 
Understory Monthly Alb   6 = 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 
0.15 0.15 
Number of Root Zones     6 = 3       
Root Zone Depths         6 = 0.10 0.25 0.40    
Overstory Root Fraction  6 = 0.20 0.40 0.40       
Understory Root Fraction 6 = 0.40 0.60 0.00     
 
Vegetation Description   7 = Wooded Grassland 
Impervious Fraction      7 = 0.0 
Overstory Present        7 = TRUE        
Understory Present       7 = TRUE              
Fractional Coverage      7 = 0.5          
Hemi Fract Coverage      7 = 0.5 
Trunk Space              7 = 0.4            
Aerodynamic Attenuation  7 = 0.3           
Radiation Attenuation    7 = 0.1          
Max Snow Int Capacity    7 = 0.003     
Snow Interception Eff    7 = 0.6               
Mass Release Drip Ratio  7 = 0.4              
Height                   7 = 20.0 0.5       
Overstory Monthly LAI    7 = 2.0 2.0 2.0 2.0 2.0 6.0 6.0 6.0 6.0 2.0 2.0 2.0 
Understory Monthly LAI   7 = 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 2.0 2.0 2.0 
Maximum Resistance       7 = 5000. 600.   
Minimum Resistance       7 = 200. 200.     
Moisture Threshold       7 = 0.33 0.13      
Vapor Pressure Deficit   7 = 4000 4000      
Rpc                      7 = .108 .108 
Overstory Monthly Alb    7 = 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 
0.15 0.15 
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Understory Monthly Alb   7 = 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 
0.15 0.15 
Number of Root Zones     7 = 3       
Root Zone Depths         7 = 0.10 0.25 0.40    
Overstory Root Fraction  7 = 0.20 0.40 0.40       
Understory Root Fraction 7 = 0.40 0.60 0.00       
 
Vegetation Description   8 = Closed Shrub  
Impervious Fraction      8 = 0.0 
Overstory Present        8 = FALSE         
Understory Present       8 = TRUE              
Fractional Coverage      8 =           
Hemi Fract Coverage      8 = 
Trunk Space              8 =             
Aerodynamic Attenuation  8 =            
Radiation Attenuation    8 =           
Max Snow Int Capacity    8 =     
Snow Interception Eff    8 =                
Mass Release Drip Ratio  8 =               
Height                   8 = 2.0      
Overstory Monthly LAI    8 = 2.0 2.0 2.0 2.0 2.0 5.0 5.0 5.0 5.0 2.0 2.0 2.0 
Understory Monthly LAI   8 = 2.0 2.0 2.0 2.0 2.0 5.0 5.0 5.0 5.0 2.0 2.0 2.0 
Maximum Resistance       8 = 600   
Minimum Resistance       8 = 200     
Moisture Threshold       8 = 0.33       
Vapor Pressure Deficit   8 = 4000       
Rpc                      8 = .108 
Overstory Monthly Alb    8 = 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
0.14 0.14 
Understory Monthly Alb   8 = 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
0.14 0.14 
Number of Root Zones     8 = 3       
Root Zone Depths         8 = 0.10 0.25 0.40     
Overstory Root Fraction  8 =        
Understory Root Fraction 8 = 0.40 0.60 0.00         
 
Vegetation Description   9 = Open Shrub 
Impervious Fraction      9 = 0.0 
Overstory Present        9 = FALSE         
Understory Present       9 = TRUE              
Fractional Coverage      9 =           
Hemi Fract Coverage      9 = 
Trunk Space              9 =             
Aerodynamic Attenuation  9 =            
Radiation Attenuation    9 =           
Max Snow Int Capacity    9 =     
Snow Interception Eff    9 =                
Mass Release Drip Ratio  9 =               
Height                   9 =  1.0     
Overstory Monthly LAI    9 = 1.0 1.0 1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 1.0 
Understory Monthly LAI   9 = 1.0 1.0 1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 1.0 
Maximum Resistance       9 =  600   
Minimum Resistance       9 =  200    
Moisture Threshold       9 =  0.33      
Vapor Pressure Deficit   9 =  4000      
Rpc                      9 =  .108 
Overstory Monthly Alb    9 = 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 
0.12 0.12 
Understory Monthly Alb   9 = 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 
0.12 0.12 
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Number of Root Zones     9 = 3       
Root Zone Depths         9 =  0.10 0.25 0.40    
Overstory Root Fraction  9 =        
Understory Root Fraction 9 =  0.40 0.60 0.00      
 
Vegetation Description   10 = Grassland    
Impervious Fraction      10 = 0.0 
Overstory Present        10 = FALSE         
Understory Present       10 = TRUE              
Fractional Coverage      10 =           
Hemi Fract Coverage      10 = 
Trunk Space              10 =             
Aerodynamic Attenuation  10 =            
Radiation Attenuation    10 =           
Max Snow Int Capacity    10 =     
Snow Interception Eff    10 =                
Mass Release Drip Ratio  10 =               
Height                   10 = 0.5    
Overstory Monthly LAI    10 = 0.5 0.5 0.5 0.5 0.5 6.0 6.0 6.0 6.0 0.5 0.5 0.5 
Understory Monthly LAI   10 = 0.5 0.5 0.5 0.5 0.5 6.0 6.0 6.0 6.0 0.5 0.5 0.5 
Maximum Resistance       10 = 600   
Minimum Resistance       10 = 200     
Moisture Threshold       10 = 0.33       
Vapor Pressure Deficit   10 = 4000       
Rpc                      10 = .108 
Overstory Monthly Alb    10 = 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 
0.19 0.19 
Understory Monthly Alb   10 = 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 
0.19 0.19 
Number of Root Zones     10 = 3       
Root Zone Depths         10 = 0.10 0.25 0.40     
Overstory Root Fraction  10 =        
Understory Root Fraction 10 = 0.40 0.60 0.00     
 
Vegetation Description   11 = Cropland  
Impervious Fraction      11 = 0.0 
Overstory Present        11 = FALSE         
Understory Present       11 = TRUE             
Fractional Coverage      11 =         
Hemi Fract Coverage      11 = 
Trunk Space              11 =              
Aerodynamic Attenuation  11 =          
Radiation Attenuation    11 =  
Max Snow Int Capacity    11 =  
Snow Interception Eff    11 =  
Mass Release Drip Ratio  11 =  
Height                   11 = 1.0      
Overstory Monthly LAI    11 = 0.5 0.5 0.5 0.5 0.5 6.0 6.0 6.0 6.0 0.5 0.5 0.5 
Understory Monthly LAI   11 = 0.5 0.5 0.5 0.5 0.5 6.0 6.0 6.0 6.0 0.5 0.5 0.5 
Maximum Resistance       11 = 600.   
Minimum Resistance       11 = 120.     
Moisture Threshold       11 = 0.33       
Vapor Pressure Deficit   11 = 4000       
Rpc                      11 = .108 
Overstory Monthly Alb    11 = 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
0.20 0.20 
Understory Monthly Alb   11 = 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
0.20 0.20 
Number of Root Zones     11 = 3       
Root Zone Depths         11 = 0.10 0.25 0.40   
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Overstory Root Fraction  11 =  
Understory Root Fraction 11 = 0.40 0.60 0.00       
 
Vegetation Description   12 = Bare 
Impervious Fraction      12 = 0.0 
Overstory Present        12 = FALSE         
Understory Present       12 = FALSE             
Fractional Coverage      12 =  
Hemi Fract Coverage      12 = 
Trunk Space              12 =  
Aerodynamic Attenuation  12 =  
Radiation Attenuation    12 =  
Max Snow Int Capacity    12 =  
Snow Interception Eff    12 =  
Mass Release Drip Ratio  12 =  
Height                   12 =  
Overstory Monthly LAI    12 = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Understory Monthly LAI   12 = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Maximum Resistance       12 =  
Minimum Resistance       12 =  
Moisture Threshold       12 =  
Vapor Pressure Deficit   12 =  
Rpc                      12 =  
Overstory Monthly Alb    12 = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 
Understory Monthly Alb   12 = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 
Number of Root Zones     12 = 3      
Root Zone Depths         12 = 0.10 0.25 0.40   
Overstory Root Fraction  12 =  
Understory Root Fraction 12 = 0.0 0.0 0.00    
 
Vegetation Description   13 = Urban  
Impervious Fraction      13 = 0.0 
Overstory Present        13 = FALSE         
Understory Present       13 = TRUE              
Fractional Coverage      13 =  
Hemi Fract Coverage      13 = 
Trunk Space              13 =  
Aerodynamic Attenuation  13 =  
Radiation Attenuation    13 =  
Max Snow Int Capacity    13 =  
Snow Interception Eff    13 =  
Mass Release Drip Ratio  13 =  
Height                   13 = 0.2 
Overstory Monthly LAI    13 = 1.0 1.0 1.0 1.0 1.0 3.0 3.0 3.0 3.0 1.0 1.0 1.0 
Understory Monthly LAI   13 = 1.0 1.0 1.0 1.0 1.0 3.0 3.0 3.0 3.0 1.0 1.0 1.0 
Maximum Resistance       13 = 3000.0   
Minimum Resistance       13 = 120.0     
Moisture Threshold       13 = 0.33        
Vapor Pressure Deficit   13 = 4000       
Rpc                      13 = .108 
Overstory Monthly Alb    13 = 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
0.20 0.20 
Understory Monthly Alb   13 = 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
0.20 0.20 
Number of Root Zones     13 = 3       
Root Zone Depths         13 = 0.10 0.25 0.40     
Overstory Root Fraction  13 =  
Understory Root Fraction 13 = 0.40 0.60 0.00        
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Vegetation Description   14 = Water  
Impervious Fraction      14 = 0.0 
Overstory Present        14 = FALSE         
Understory Present       14 = FALSE             
Fractional Coverage      14 =  
Hemi Fract Coverage      14 = 
Trunk Space              14 =  
Aerodynamic Attenuation  14 =  
Radiation Attenuation    14 =  
Max Snow Int Capacity    14 =  
Snow Interception Eff    14 =  
Mass Release Drip Ratio  14 =  
Height                   14 =  
Overstory Monthly LAI    14 = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Understory Monthly LAI   14 = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Maximum Resistance       14 =  
Minimum Resistance       14 =  
Moisture Threshold       14 =  
Vapor Pressure Deficit   14 =  
Rpc                      14 =  
Overstory Monthly Alb    14 = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 
Understory Monthly Alb   14 = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 
Number of Root Zones     14 = 3       
Root Zone Depths         14 = 0.10 0.25 0.40   
Overstory Root Fraction  14 =  
Understory Root Fraction 14 = 0.00 0.00 0.00       
 
Vegetation Description   15 = Coastal Conifer Forest 
Impervious Fraction      15 = 0.0 
Overstory Present        15 = TRUE         
Understory Present       15 = TRUE              
Fractional Coverage      15 = 0.9          
Hemi Fract Coverage      15 = 0.9 
Trunk Space              15 = .5            
Aerodynamic Attenuation  15 = 2.0           
Radiation Attenuation    15 = 0.15          
Max Snow Int Capacity    15 = 0.040     
Snow Interception Eff    15 = 0.6               
Mass Release Drip Ratio  15 = 0.4             
Height                   15 = 50.0 0.5      
Overstory Monthly LAI    15 = 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 
12.0 12.0 
Understory Monthly LAI   15 = 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 
Maximum Resistance       15 = 5000.0 3000.0   
Minimum Resistance       15 = 666.6 200.0     
Moisture Threshold       15 = 0.33 0.13       
Vapor Pressure Deficit   15 = 4000 4000       
Rpc                      15 = .108 .108 
Overstory Monthly Alb    15 = 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 
0.18 0.18 
Understory Monthly Alb   15 = 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 
0.18 0.18 
Number of Root Zones     15 =  3      
Root Zone Depths         15 =  0.10 0.25 0.40   
Overstory Root Fraction  15 =  0.20 0.40 0.40    
Understory Root Fraction 15 =  0.40 0.60 0.00      
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Vegetation Description   16 = Xeric Conif Forest (Dry) 
Impervious Fraction      16 = 0.0 
Overstory Present        16 = TRUE         
Understory Present       16 = TRUE              
Fractional Coverage      16 = 0.9          
Hemi Fract Coverage      16 = 0.9 
Trunk Space              16 = .5            
Aerodynamic Attenuation  16 = 2.0           
Radiation Attenuation    16 = 0.15          
Max Snow Int Capacity    16 = 0.040     
Snow Interception Eff    16 = 0.6               
Mass Release Drip Ratio  16 = 0.4             
Height                   16 = 50.0 0.5      
Overstory Monthly LAI    16 = 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 
12.0 12.0 
Understory Monthly LAI   16 = 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 
Maximum Resistance       16 = 5000.0 3000.0   
Minimum Resistance       16 = 666.6 200.0     
Moisture Threshold       16 = 0.33 0.13       
Vapor Pressure Deficit   16 = 4000 4000       
Rpc                      16 = .108 .108 
Overstory Monthly Alb    16 = 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 
0.18 0.18 
Understory Monthly Alb   16 = 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 
0.18 0.18 
Number of Root Zones     16 =  3      
Root Zone Depths         16 =  0.10 0.25 0.40   
Overstory Root Fraction  16 =  0.20 0.40 0.40    
Understory Root Fraction 16 =  0.40 0.60 0.00      
 
 
Vegetation Description   17 = Mesic Conif Forest (Wet)     
Impervious Fraction      17 = 0.0 
Overstory Present        17 = TRUE         
Understory Present       17 = TRUE              
Fractional Coverage      17 = 0.9          
Hemi Fract Coverage      17 = 0.9 
Trunk Space              17 = .5            
Aerodynamic Attenuation  17 = 2.0           
Radiation Attenuation    17 = 0.15          
Max Snow Int Capacity    17 = 0.040     
Snow Interception Eff    17 = 0.6               
Mass Release Drip Ratio  17 = 0.4             
Height                   17 = 50.0 0.5      
Overstory Monthly LAI    17 = 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 
12.0 12.0 
Understory Monthly LAI   17 = 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 
Maximum Resistance       17 = 5000.0 3000.0   
Minimum Resistance       17 = 666.6 200.0     
Moisture Threshold       17 = 0.33 0.13       
Vapor Pressure Deficit   17 = 4000 4000       
Rpc                      17 = .108 .108 
Overstory Monthly Alb    17 = 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 
0.18 0.18 
Understory Monthly Alb   17 = 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 
0.18 0.18 
Number of Root Zones     17 =  3      
Root Zone Depths         17 =  0.10 0.25 0.40   
Overstory Root Fraction  17 =  0.20 0.40 0.40    
Understory Root Fraction 17 =  0.40 0.60 0.00      
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Vegetation Description   18 = Subalpine Conif Forest 
Impervious Fraction      18 = 0.0 
Overstory Present        18 = TRUE         
Understory Present       18 = TRUE              
Fractional Coverage      18 = 0.9          
Hemi Fract Coverage      18 = 0.9 
Trunk Space              18 = .5            
Aerodynamic Attenuation  18 = 2.0           
Radiation Attenuation    18 = 0.15          
Max Snow Int Capacity    18 = 0.040     
Snow Interception Eff    18 = 0.6               
Mass Release Drip Ratio  18 = 0.4             
Height                   18 = 50.0 0.5      
Overstory Monthly LAI    18 = 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 
12.0 12.0 
Understory Monthly LAI   18 = 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 
Maximum Resistance       18 = 5000.0 3000.0   
Minimum Resistance       18 = 666.6 200.0     
Moisture Threshold       18 = 0.33 0.13       
Vapor Pressure Deficit   18 = 4000 4000       
Rpc                      18 = .108 .108 
Overstory Monthly Alb    18 = 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 
0.18 0.18 
Understory Monthly Alb   18 = 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 
0.18 0.18 
Number of Root Zones     18 =  3      
Root Zone Depths         18 =  0.10 0.25 0.40   
Overstory Root Fraction  18 =  0.20 0.40 0.40    
Understory Root Fraction 18 =  0.40 0.60 0.00      
 
Vegetation Description   19 = Alpine Meadow 
Impervious Fraction      19 = 0.0 
Overstory Present        19 = FALSE        
Understory Present       19 = TRUE             
Fractional Coverage      19 =           
Hemi Fract Coverage      19 = 
Trunk Space              19 =             
Aerodynamic Attenuation  19 =            
Radiation Attenuation    19 =           
Max Snow Int Capacity    19 =     
Snow Interception Eff    19 =                
Mass Release Drip Ratio  19 =               
Height                   19 = 0.5      
Overstory Monthly LAI    19 = 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 0.5 0.5 0.5 
Understory Monthly LAI   19 = 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 0.5 0.5 0.5 
Maximum Resistance       19 = 600   
Minimum Resistance       19 = 200     
Moisture Threshold       19 = 0.33       
Vapor Pressure Deficit   19 = 4000       
Rpc                      19 = .108 
Overstory Monthly Alb    19 = 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 
0.19 0.19 
Understory Monthly Alb   19 = 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 
0.19 0.19 
Number of Root Zones     19 = 3       
Root Zone Depths         19 = 0.10 0.25 0.40         
Overstory Root Fraction  19 =        
Understory Root Fraction 19 = 0.0 0.0 0.0      
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Vegetation Description   20 = Ice 
Impervious Fraction      20 = 0.0 
Overstory Present        20 = FALSE        
Understory Present       20 = FALSE              
Fractional Coverage      20 =           
Hemi Fract Coverage      20 = 
Trunk Space              20 =             
Aerodynamic Attenuation  20 =            
Radiation Attenuation    20 =           
Max Snow Int Capacity    20 =     
Snow Interception Eff    20 =                
Mass Release Drip Ratio  20 =               
Height                   20 =       
Overstory Monthly LAI    20 = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Understory Monthly LAI   20 = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Maximum Resistance       20 =    
Minimum Resistance       20 =      
Moisture Threshold       20 =        
Vapor Pressure Deficit   20 =        
Rpc                      20 =  
Overstory Monthly Alb    20 = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 
Understory Monthly Alb   20 = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 
Number of Root Zones     20 = 3       
Root Zone Depths         20 = 0.10 0.25 0.40         
Overstory Root Fraction  20 =        
Understory Root Fraction 20 = 0.0 0.0 0.0      
 
############################################################################### 
# MODEL OUTPUT SECTION 
############################################################################### 
[OUTPUT]                    
Output Directory        = //home2/spu_cc/tolt/output/historic/ 
 
################ PIXEL DUMPS  
Number of Output Pixels = 1  
 
North Coordinate 1 = 5281793 
East Coordinate 1  = 605820 
Name 1             = SKOOKUM 
 
################ MODEL STATE ##################################################         
Number of Model States =  2         
State Date 1 =  10/01/1990-00 
State Date 2 =  10/01/1998-00 
 
################ MODEL MAPS  
Number of Map Variables = 1 
Map Variable 1 = 404 
Map Layer 1 = 1 
Number of Maps 1 = 2 
Map Date 1 1 = 01/15/1943-00 
Map Date 2 1 = 01/15/1948-00 
 
############################################################################### 
# END OF INPUT FILE 
############################################################################### 
[End]   




