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Abstract

UrbanSim is a new urban simulation model, developed over the past several years, which is now operational
in three urban areas in the United States. The model system is designed to address emerging needs to better
coordinate transportation and land use planning as a result of recognition of the strong interactions between
land use and transportation, increasing pressure from federal transportation and environmental legislation,
and growing adoption of state growth management programs. The model system is implemented as a set of
interacting model components that represent the major actors and choices in the urban system, including
household moving and residential location, business choices of employment location, and developer choices
of locations and types of real estate development, all subject to the influence of governmental transportation
and land use policy scenarios. The model design is unusual in the degree of disaggregation of space, time,
and agents, and in the adoption of a dynamic disequilibrium approach. The objective of this paper is to
describe the entire system at a sufficient level of detail to convey the key specification and design choices
made in implementing the system.

1 Introduction

Transportation models have been in routine use by metropolitan planning organizations for decades. How-
ever, land use planning is often not well integrated with transportation planning, despite their strong interac-
tions. Further, the state of common practice in land use modeling, and integrated land use and transportation
modeling, is much less advanced than that for transportation modeling alone. Some metropolitan regions
do no land use modeling at all. Others typically use a simple, aggregate model, which is insensitive to
important policy choices regarding zoning, urban growth boundaries, and taxes and incentives. The un-
fortunate consequence is that the models are then useless for comparing alternate scenarios involving such
policy alternatives.

Considerable progress has recently been made in addressing this lack. Over the past several years, we
have been designing and evolving a reusable land use modeling system, named UrbanSim [10, 12, 13],
which has also been integrated with a range of transportation models. This paper describes version 1.0
of UrbanSim [15], released as Open Source software at http://www.urbansim.org. UrbanSim has evolved
from a prototype software system and model application tested in Eugene-Springfield, Oregon, to a second-
generation production software architecture that has now been used to implement several versions of the

1



core model components, and has been subsequently applied in Honolulu, Hawaii and Salt Lake City, Utah.

UrbanSim differs from other operational urban models in several prominent characteristics. The first
major design difference is that it takes a dynamic disequilibrium approach, representing adjustment pro-
cesses that occur at different rates, unlike the cross-sectional equilibrium approach taken in models such
as DRAM/EMPAL [11], MEPLAN [5], or TRANUS [2]. The assumptions underlying equilibrium models
are drawn from general equilibrium in economics, where the focus is on the analytical insight gained by
comparing two steady state conditions in perfectly competitive markets that differ only as a result of some
exogenous shock to the system. Equilibrium analysis in economics is based on assumptions of perfectly com-
petitive markets, requiring that the actions of any individual cannot affect prices, the products of all firms
in the market are homogeneous, resources are perfectly mobile (no transaction costs or delays), and present
and future prices and costs are perfectly known to all market participants. Moreover, equilibrium requires
that the agendas of all buyers and sellers in all markets be coordinated simultaneously. When considering
the complex interactions among urban housing, labor and transportation markets, these assumptions are
clearly over-simplifications.

There are at least three different time scales that are relevant to the interacting system of land use and
transportation that raise serious concern about the appropriateness of full equilibration. First, travel behavior
may change within the scope of a single day, in response to changes in the transport system. Let us call
this the short-term. Second, household and business location choices require somewhat longer to make
adjustments to transport system changes, so that even if we ignore the transaction costs of moving and the
lack of perfect information, we cannot expect location demand to equilibrate to transport system changes in
the short-term. Let us call the location choice adjustment the mid-term. Third, real estate developers will
respond speculatively to transport system changes and directly to observed shifts in demand for locations,
over yet a longer time frame of several years that is required by the time to assemble land and financing,
develop plans and obtain permits, extend infrastructure, and of course, prepare a site and construct buildings.
We refer to the multiple-year time scale for the real estate development process as the long-term.

One might suggest that the time scales are irrelevant if we get the same outcome in the long run, after all
the adjustments are accounted for. This is unlikely for several reasons. Consider that during the time frame
that a developer is constructing real estate, processes that occur in the short and mid-term are changing,
so that decisions made at the beginning of the real estate development process are made sub-optimal by
these changes, resulting in the patterns of over- and under-building so common in urban real estate markets.
Moreover, committed development, even if misguided and suboptimal, is durable, and influences prices and
availability of real estate opportunities for households and firms and competing developers, making path-
dependence an important part of the reaction to a transport system change. And of course, we know that
relocation decisions are constrained by many factors, so that a change in transportation costs due to a
transport system or pricing change are unlikely to be large enough to cause every household and business to
relocate to an ‘optimal’ location with respect to balancing transportation and other costs, in the way that
full equilibration requires.

So, if we impose congestion pricing, or open a new highway or rail system, in year 2010, why should we
expect that the real estate demand and supply would be able to respond in the short-term of that given
year, in the way that a full equilibration of transportation and land use would suggest? It might make more
sense to identify the relevant time scales of these three processes, and assess the degree to which partial
equilibration occurs, as a function of the rate of adjustment of the process. This is the approach we have
taken in the design of UrbanSim.

Second, the model differs from prior modeling efforts by taking an extremely disaggregate approach, modeling
individual households, jobs, and real estate development and location choices using grid cells of 150 × 150
meters in size. The model inputs include address-level business establishment data, and parcel level land use
and real estate inventories. The model system microsimulates the annual evolution in locations of individual
households and jobs, and the evolution of the real estate within each individual grid cell as the result of
actions by real estate developers. To our knowledge, no other model system to date has been operationalized
at this level of detail in time, space, and agents.
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Third, the model system is implemented within a software architecture that has been specifically designed
to support disaggregate spatial simulation using a modular approach to the management of data and model
components. The software is written in Java, and has been developed as an Open Source project using the
GNU General Public Licence [7], which means that anyone can freely access the source code, modify it, and
redistribute it. The aim of this approach is simultaneously to encourage collaboration, improve the openness
and transparency of the model system, and increase the robustness and speed of evolution of the software
and model system. The Open Source approach to software development, perhaps the best known example
of which is the Linux operating system, has been increasingly adopted as a viable and competitive approach,
as compared to proprietary systems. Our hope is that access to the model without proprietary restrictions
will stimulate rapid innovation in an area that is in significant need of new approaches, and where research
funds for new development are limited.

These design choices were motivated by the need to address policy questions that require substantial geo-
graphic detail and a level of behavioral realism inconsistent with general equilibrium assumptions, within a
policy process that is increasingly open to public scrutiny and participation. Recent reviews of these and
other models can be found elsewhere [4, 6, 9]. We review briefly in the next section the software architecture,
and then move to a description of the current model specifications as applied in Eugene-Springfield. The
paper concludes with an assessment of the current state of the system and plans for its evolution.

2 Software Architecture

The UrbanSim software architecture has four principal components:

1. models that encode the behavior of agents in the simulation (such as households and developers), as
well as the objects they operate upon (such as land parcels and buildings),

2. a model coordinator that schedules models to run and notifies them when data of interest has changed,

3. an object store that holds the shared representations of agents and other entities in the simulated world,
and

4. a translation and aggregation layer that performs a range of data conversions to mediate between the
object store and the models.

Models represent different actors or processes in the urban environment. In addition to encapsulating the
behavior of the actor or process, each model is also responsible for defining the set of object types it operates
on, and the fields of those objects with which it is concerned. A model can specify that it wishes to share
fields also declared by other models, thus providing one technique for data-level coupling and integration of
models via the object store. A model can also declare new object types that encapsulate domain-specific
data not previously declared (e.g., a water quality model might declare a nutrient load value). A model may
specify a set of object types and fields it wishes to monitor for updates, creations, or deletions. Each model
is also responsible for indicating how frequently it wishes to be executed; there are no external constraints
on how frequently or regularly a model need run.

The models do not communicate directly with each other; rather, they communicate via shared data held in
the object store, mediated by the translation and aggregation layer. This extensible, modular architecture
supports system evolution, in particular replacing a model with a revised one, and creating and integrating
new models. It allows models to define and share common sets of objects that they all operate upon, via
the object store (regardless of the original source of the data), and also allows them to monitor changes to
data fields, providing a convenient method for models to synchronize their actions. Lastly, it provides the
Translation/Aggregation Layer that automatically performs a range of data conversions that facilitate model
integration. For example, models can query for zonal population totals. The Translation/Aggregation Layer
computes and maintains these totals independent of the information in the object store, which consists of
population information at the grid cell level.
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A primary goal of this architecture is to move as much of the software complexity out of the individual
models and into the supporting infrastructure as possible. This supporting infrastructure need be written
just once, and can have the attention of an expert programmer. The models, on the other hand, are both
numerous and frequently changing. Often, specifying them is a complex process, involving considerable
domain-specific knowledge and testing; the more one can relieve the model writers of programming burdens
the better, so that they can concentrate on issues arising from the domain.

3 Model Structure

UrbanSim takes several key inputs as exogenous. Two of these are from external model systems: a macroeco-
nomic model to predict future macroeconomic conditions such as population and employment by sector, and
a travel demand model system to predict travel conditions such as congested times and composite utilities
of travel between zones. The latter is loosely coupled to UrbanSim, with land use predictions input to the
external travel models, and travel conditions input to subsequent annual iterations of the UrbanSim land
use model system.

UrbanSim normally schedules each model to operate once per simulated year, with the data flow as shown
in Figure 2. The data store contains the current state of all objects in the system, with archiving as needed
by individual models, or as requested by the user into files for processing by external tools (such as GIS
systems). Each of the key models is described in the following subsections. The mathematical structure of
the underlying procedures in the model are virtually identical for the household and employment models, so
for brevity the household equations are omitted from the presentation below.

The system reads exogenous inputs not only from external macroeconomic and travel demand models, but
also from user input. These user inputs include assumptions reflecting land use policies that regulate real
estate development, and any user-specified events that describe scheduled events representing changes in
employment, real estate development or land policy the user intends to apply to the model in a simulation
year beyond the initial or base year.

The main model components, in the order of their execution in a given simulated year, are the economic and
demographic transition models, the household and employment mobility models, the accessibility model,
the household and employment location choice models, the real estate development model, and the land
price model. An output module writes simulation results in user-specified formats to output files for further
analysis or processing, such as by travel demand models or by GIS. (For software engineering reasons, the
output module is implemented as a model, namely the Export Model. Conceptually, however, it is not a
model in the same sense as the others, since it is not an actor or process in the urban environment, but just
reads information and exports it to external files.)

Locations in the model are based on a grid with a resolution of 150 × 150 meters per grid cell. Cells are
cross-referenced to Traffic Analysis Zones for indexing travel model outputs, and to city, county, and other
geographic overlays for indexing land use policies that apply to specific jurisdictions or overlays.

3.1 Accessibility Model

Since this model is not of the monocentric or spatial interaction genre, in which the choice of workplace
is exogenous and residential locations are chosen on the basis principally of commute to the city center
or to a predetermined workplace, we deal with accessibility in a more general framework. Accessibility is
considered a normal good, like other positive attributes of housing, on which consumers place a positive
economic value. We therefore expect that consumers value access to workplaces and shopping opportunities,
among the many other attributes they consider in their housing preferences. However, not all households
respond to accessibility in the same way. Retired persons would be less influenced by accessibility to job
opportunities than would working age households, for instance.
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We operationalize the concept of accessibility for a given location as the distribution of opportunities weighted
by the composite utility of all modes of travel to those destinations, defined as the logsum from the mode
choice model for each origin-destination pair. The resulting access measure Ai for each location i is thus:

Ai =
J∑

j=1

Dje
Laij (1)

where:
Dj is the quantity of activity in location j
Laij is the composite utility, or logsum, for households with vehicle ownership level a

from location i to location j

The accessibility model reads the logsum matrix from the travel model and the land use distribution for a
given year, and creates accessibility indices for use in the household and business location choice models. The
general framework is to summarize the accessibility from each zone to various activities for which accessibility
is considered important in household or business location choice.

Since UrbanSim operates annually, but travel model updates are likely to be executed for only two to
three of the years within the forecasting horizon, travel utilities remain constant from one travel model
run until they are replaced by the next travel model result. Although travel utilities remain constant
between years for which the travel model system is applied, the activity distribution in these accessibility
indices is updated annually, so that the accessibility indices change from one year to the next to reflect
the evolving spatial distribution of activities. There is considerable disagreement in the literature about
how or whether land use and transportation should be brought to equilibrium through multiple iterations
of the land use and transportation models. As discussed in the introduction to the paper, however, there
is little basis for assuming that the effects of major transportation projects such as rail or highway systems
should instantaneously generate their full effects on land use. In reality, land use is likely to respond to
transportation improvements over several years or even decades, depending on the magnitude of the change.
As a result, we do not propose any within-year iteration between the land use and transportation models,
and only propose applying the travel models as needed to reflect system changes, or sufficient land use change
to generate significant differences in congestion patterns.

3.2 Economic and Demographic Transition Models

3.2.1 Economic Transition Model

Employment is classified by the user into employment sectors based on aggregations of Standard Industrial
Classification codes. Typically 10 to 20 sectors are defined, based on the local economic structure. Aggregate
forecasts of economic activity and sectoral employment are exogenous to UrbanSim, and are used as inputs
to the model. These forecasts may be obtained from state economic forecasts or from commercial or in-house
sources.

The Economic Transition Model integrates these exogenous forecasts of aggregate employment by sector with
the UrbanSim database by computing the sectoral growth or decline from the preceding year, and either
removing jobs from the database in sectors that are declining, or creating and queuing jobs to be placed
in the employment location choice model for sectors that experience growth. If the user supplies only total
employment control totals, rather than totals by sector, the sectoral distribution is assumed consistent with
the current sectoral distribution. In cases of employment loss, the probability that a job will be removed
is assumed proportional to the spatial distribution of jobs in the sector. The jobs that are removed vacate
the space they were occupying, and this space becomes available to the pool of vacant space for other jobs
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to occupy in the location component of the model. This procedure keeps the accounting of land, structures,
and occupants up to date.

New jobs are not immediately assigned a location. Instead, new jobs are added to the database and assigned a
null location, to be resolved by the Employment Location Choice Model (Section 3.4.1). The model proceeds
as follows.

Calculate the number of jobs to be added or removed (a scalar). Here |Js(t−1)| indicates the number of
elements in (cardinality of) the set Js(t−1).

∆Jst = Cst − |Js(t−1)| (2)

where:

∆Jst is the change from year t− 1 to t in total jobs in sector s,
Cst is the exogenous total employment in sector s in year t,

Js(t−1) is the set of all jobs in sector s in year t− 1.

Jst is either the union of the previous year’s jobs and some newly created jobs, or the difference between the
previous year’s jobs and some number of jobs to remove.

Jst =





Js(t−1) ∪ Fst, if ∆Jst > 0
Js(t−1), if ∆Jst = 0
Js(t−1) − Fst, if ∆Jst < 0

(3)

and

Jst ⊂ JA (4)

where:

Jst is the set of all jobs in sector s at time t,
Fst is the set of jobs in flux in sector s in year t,
JA is the universe of jobs.

The jobs in flux are jobs being added or removed from this sector at this time. If we are adding jobs, new
jobs are taken from the universe of all jobs and added to the set of jobs present in the model at time t. If we
are removing jobs, the flux jobs are a random subset of the current jobs of a particular sector in the model.

Fst =





{ j ∈ JA | j /∈ Jst, j is in sector s }, if ∆Jst > 0
∅, if ∆Jst = 0
{ j ∈ Jst }, if ∆Jst < 0

(5)

subject to

|Fst| = |∆Jst|. (6)

(Equation 6 above constrains the cardinality of the set of flux jobs to be equal to the absolute value of the
change in number of jobs.)

Let Ut be the set of jobs that do not have a location match at time t. For the base year t = 0, Ut will initially
be the empty set; in subsequent years it will initially be the remaining unplaced jobs from the previous year
(although typically this will be the empty set as well).
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Ut ←
{
∅ if t = 0
Ut−1 otherwise

(7)

If we are adding new jobs then they are initially without a location. They are added to the set of unplaced
jobs and will be subsequently placed by the Employment Location Choice Model.

for each sector s: if ∆Jst > 0 then Ut ← Ut ∪ Fst (8)

If we are removing jobs then we need to remove the corresponding placed jobs pairs.

for each sector s: if ∆Jst < 0 then Pt ← Pt − { (j, l) ∈ Pt | j ∈ Fst } (9)

where:

Pt is the set of all pairs (j, l) representing a job j placed at location l at time t.

Also, the locations previously occupied by the jobs being removed must be placed in the set of vacant
locations.

Vt = { l ∈ LJ
t | ∀j ∈ Jt (j, l) /∈ Pt } (10)

where:

Vt is the set of locations that do not have a job match at time t,
LJ

t is the set of all locations at time t where a job could be placed,
Jt is the set of jobs at time t.

3.2.2 Demographic Transition Model

The Demographic Transition Model accounts for changes in the distribution of households by type over
time, using an algorithm analogous to that used in the Economic Transition Model. In reality, these changes
result from a complex set of social and demographic changes that include aging, household formation,
divorce and household dissolution, mortality, birth of children, migration into and from the region, changes
in household size, and changes in income, among others. The data (and theory) required to represent all
of these components and their interactions adequately are not readily available. Instead, the Demographic
Transition Model, like the Economic Transition Model described in Section 3.2.1, uses external control totals
of population and households by type (the latter only if available) to provide a mechanism for the user to
approximate the net results of these changes. Analysis by the user of local demographic trends may inform
the construction of control totals with distributions of household size, age of head, and income. If only total
population is provided in the control totals, the model assumes that the distribution of households by type
remains static.

As in the economic transition case, household births are added to a list of movers that will be located by the
Household Location Choice Model. Household deaths, on the other hand, are accounted for in this model
by removing those households from the housing stock, and by properly accounting for the vacancies created
by their departure. The demographic transition model is analogous in form to the employment transition
model described above.
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3.3 Mobility Models

3.3.1 Employment Mobility Model

Employment mobility and location choices are made by firms. However, in the current version of UrbanSim,
we use individual jobs as the units of analysis. This is equivalent to assuming that businesses are making
individual choices about the location of each job, and are not constrained to moving an entire establishment.
A prior version of the employment location model used the business establishment as the unit of analysis.
While there are advantages to each approach, the main advantage to using the individual job as the unit of
analyis is that it affords greater capacity for modeling the location of jobs in large businesses.

The Employment Mobility Model predicts the probability that jobs of each type will move from their current
location or stay during a particular year. This is a transitional change that could reflect job turnover by
employees, layoffs, business relocations, or closures. Similar to the economic transition model when handling
job losses in declining sectors, the model assumes that the probability of moving is proportional to the spatial
distribution of jobs in the sector. All placement of jobs is managed through the employment location model.

As in the case of job losses predicted in the economic transition component, the application of this model
requires subtracting jobs by sector from the buildings they currently occupy, and noting this space as vacant.
These job counts are added to the unallocated new jobs by sector calculated in the economic transition
model. The combination of new and moving jobs serve as a pool to be located in the employment location
choice model. Vacancy of nonresidential space is then updated, making space available for allocation in the
employment location choice model.

Since it is possible that the relative attractiveness of commercial space in other locations when compared
with an establishment’s current location may influence its decision to move, an alternative structure for
the mobility model could use the marginal choice in a nested logit model with a conditional choice of
location. In this way, the model would use information about the relative utility of alternative locations
compared to the utility of the current location in predicting whether jobs will move. While this might be
more theoretically appealing than the specification given, it is generally not supported by the data available
for calibration. Instead, the mobility decision is treated as an independent choice, and the probabilities
estimated by annual mobility rates directly observed over a recent period for each sector. These rates are
computed from longitudinally linked business establishment files, if available.

The resulting form of the employment mobility model is as follows. Mst is a set of jobs that are chosen
to be moved based on P (j, t), a Monte Carlo sampling process using the annual mobility rate for sector s.
This procedure generates a random number between 0 and 1, and compares it to the cumulative probability
of each possible outcome. The selected outcome is then the one that has a cumulative probability interval
which contains the random number. In the case of only two outcomes, such as the mobility prediction, the
procedure simplifies to an evaluation of whether the random number is greater than the mobility probability,
in which case the move outcome is chosen.

Mst = { j ∈ Jst | P (j, t) }, (11)

where:

Mst is the set of jobs in sector s at time t that are uprooted by the mobility model,
P (j, t) is a Monte Carlo sampling process determining if job j will be moved at time t.

The jobs to be moved are now unplaced, and so are added to the unplaced jobs set:

for each sector s: Ut ← Ut ∪Mst (12)

and are removed from the job location pairs set:

for each sector s: Pt ← Pt − { (j, l) ∈ Pt | j ∈ Mst }. (13)
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Finally, the locations previously occupied by the jobs being moved must be added to the set of vacant
locations:

Vt = { l ∈ LJ
t | ∀j ∈ Jt (j, l) /∈ Pt }. (14)

3.3.2 Household Mobility Model

The Household Mobility Model is similar in form to the Employment Mobility Model described above. The
same algorithm is used, but with rates or coefficients applicable to each household type. For households,
mobility probabilities are estimated from the Census Current Population Survey, which provides a national
database on which annual mobility rates are computed by type of household. This will reflect differential
mobility rates for renters and owners, and households at different life stages.

Application of the Household Mobility Model requires subtracting mover households by type from the housing
stock by cell, and adding them to the pool of new households by type estimated in the Demographic Transition
Model. The combination of new and moving households serves as a population of households to be located
by the Household Location Choice Model. Housing vacancy is updated as movers are subtracted, making
the housing available for occupation in the household location and housing type choice model.

3.4 Location Choice Models

3.4.1 Employment Location Choice Model

In this model, we predict the probability that a job that is either new (from the Economic Transition Model),
or has moved within the region (from the Employment Mobility Model), will be located at a particular site.
The grid cells used as the basic geographic unit of analysis in the current model implementation contain
variable quantities of space to be occupied by jobs. The number of available job locations within a grid cell
will depend mainly on the total square footage of nonresidential floorspace in the cell, and on the density
of the use of space (square feet per employee). Given the possibility that some jobs will be located in
residential units, however, housing as well as nonresidential floorspace must be considered in job location.
We have defined a maximum rate of home-based employment, determined using local data for a particular
metropolitan region, to identify the potential set of spaces available for home-based employment. The set of
job locations available for placing a job, then, are the union of the spaces in nonresidential floorspace and a
subset of the residential units in the cell:

|LJ
t | =

sl

rsd
+

hl

rhd
(15)

where:

sl is a scalar representing the total nonresidential square footage of floorspace in location l,
hl is a scalar representing the total number of housing units in location l,
rsd is a space utilization rate for nonresidential space for devtype d (sqft per employee),
rhd is a home-based employment rate, defined as the minimum units per job for devtype d

For both the employment location and household location models, we take the stock of available space as
fixed in the short run of the intra-year period of the simulation, and assume that locators are price takers.
That is, a single locating job or household does not have enough market power to influence the transaction
price, and must accept the current market price as given.

The variables included in the employment location choice model are drawn from the literature in urban
economics. We expect that accessibility to population, particularly high-income population, increases bids
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for retail and service businesses. We also expect that two forms of agglomeration economies influence location
choices: localization economies and inter-industry linkages.

Localization economies represent positive externalities associated with locations that have other firms in
the same industry nearby. The basis for the attraction may be some combination of a shared skilled labor
pool, comparison shopping in the case of retail, co-location at a site with highly desirable characteristics,
or other factors that cause the costs of production to decline as greater concentration of businesses in the
industry occurs. The classic example of localization economies is Silicon Valley. Inter-industry linkages
refer to agglomeration economies associated with location at a site that has greater access to businesses in
strategically related, but different, industries. Examples include manufacturers locating near concentrations
of suppliers in different industries, or distribution companies locating where they can readily service retail
outlets.

One complication in measuring localization economies and inter-industry linkages is determining the relevant
distance for agglomeration economies to influence location choices. At one level, agglomeration economies
are likely to affect business location choices between states, or between metropolitan areas within a state.
Within a single metropolitan area, we are concerned more with agglomeration economies at a scale relevant
to the formation of employment centers. The influence of proximity to related employment may be measured
using two scales: a regional scale effect using zone-to-zone accessibilities from the travel model, or highly
localized accessibilities using radial queries of the area immediately around the given grid cell. Most of the
spatial queries used in the model are of the latter type, because the regional accessibility variables tend to
be very highly correlated with each other, and because agglomerations are expected to be very localized.
(The use of radial queries surrounding grid cells also avoids the problems of arbitrary zonal aggregations.)

Age of buildings is included in the model to estimate the influence of age depreciation of commercial buildings,
with the expectation that businesses prefer newer buildings and discount their bids for older ones. This
reflects the deterioration of older buildings, changing architecture, and preferences, as is the case in residential
housing. There is the possibility that significant renovation will make the actual year built less relevant,
and we would expect that this would dampen the coefficient for age depreciation. We do not at this point
attempt to model maintenance and renovation investments and the quality of buildings.

Density, the inverse of lot size, is included in the location choice model. We expect businesses, like households,
to reveal different preferences for land based on their production functions and the role of amenities such
as green space and parking area. As manufacturing production continues to shift to more horizontal, land-
intensive technology, we expect the discounting for density to be relatively high. Retail, with its concentration
in shopping strips and malls, still requires substantial surface land for parking, and is likely to discount bids
less for density. We expect service firms to discount for density the least, since in the traditional urban
economics models of bid-rent, service firms generally outbid other firms for sites with higher accessibility,
land cost, and density.

We might expect that certain sectors, particularly retail, show some preference for locations near a major
highway, and are willing to bid higher for those locations. Distance to a highway is measured in meters,
using grid spatial queries. We also test for the residual influence of the classic monocentric model, measured
by travel time to the CBD, after controlling for population access and agglomeration economies. We expect
that, for most regions, the CBD accessibility influence will be insignificant or the reverse of that in the
traditional monocentric model, after accounting for the more general measure of access to employment or
population, and other effects.

Calibration of the model is based on a geocoded establishment file (matched to the parcel file to link
employment by type to land use by type). The model is estimated using a random sample of alternative
locations, which has been shown to provide consistent estimates of the coefficients [1]. A sample of geocoded
jobs in each sector is used to estimate the coefficients of the location choice model. As with the Household
Location Choice Model, the application of the model produces demand by each employment type for cell
locations.

The employment location model processes each job in the mover queue in random order, and queries grid
cells for alternative locations to consider. These alternatives are sampled in proportion to the capacity of the
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built space in the cell for accommodating jobs. The number of alternatives to consider may be determined
by the user. Jobs may be located in housing units, as is increasingly the case with home-based employment
through telecommuting and small independent home-based businesses. A logit model is applied to estimate
the probability that the current job will move to each of the alternative job spaces under consideration.
Monte Carlo simulation is used to generate a decision to locate in a particular alternative, and once this
choice is made, the job is assigned to the cell, and the respective quantities of vacant and used space in the
cell are updated. Once a job space been chosen and occupied by a locating job, it becomes unavailable for
consideration by remaining jobs in the mover queue.

The independent variables used in the employment location choice model can be grouped into the categories
of real estate characteristics, regional accessibility, and urban-design scale effects as shown below:

• Real Estate Characteristics
Prices
Development type (land use mix, density)

• Regional accessibility
Access to population
Travel time to CBD, airport

• Urban design-scale
Proximity to highway, arterials

• Local agglomeration economies within and between sectors: center formation

Using these independent variables, the employment location model is specified as a multinomial logit model,
with separate equations estimated for each employment sector. The model proceeds as follows.

The job location pairs set contains all pairs of placed jobs and their locations.

Pt = { (j, l) | j ∈ Jt, l ∈ LJ
t , job j is placed at location l }, (16)

Ut = { j | j ∈ Jt,∀l ∈ LJ
t (j, l) /∈ Pt }, (17)

Vt = { l | l ∈ LJ
t , ∀j ∈ Jt (j, l) /∈ Pt }, (18)

Dst = { (l, p) | l ∈ Vt, p is the probability of a job in sector s locating in l } (19)

where:

Dst is the set of pairs representing the probability of an employee of sector s locating to a
particular location at time t.

Monte Carlo sampling of the location choices for each sector occurs over the distribution given by Dst.

Ft = { (j, l) | j ∈ Ut, Monte Carlo choice of l from Dst given the sector of j }, (20)

where:

Ft is the set of new job/location pairs created using a Monte Carlo sampling from Dst for each
sector.

The cardinality of the set of new job/location pairs is constrained to be equal to the cardinality of the set
of unplaced jobs or of the set of unoccupied locations, whichever is smaller.

|Ft| = min(|Ut|, |Vt|). (21)
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Finally, the set of job/location pairs is modified to reflect the new matchings, the placed jobs are removed
from the set of unplaced jobs, and the newly occupied locations are removed from the set of vacant locations.

Pt ← Pt ∪ Ft (22)
Ut ← Ut − { j ∈ Ut | ∃l (j, l) ∈ Ft } (23)
Vt ← Vt − { l ∈ Vt | ∃j (j, l) ∈ Ft } (24)

3.4.2 Household Location Choice Model

In this model, as in the employment location model, we predict the probability that a household that is
either new (from the transition component), or has decided to move within the region (from the mobility
component), will choose a particular location defined by a grid cell. As before, the form of the model is
specified as multinomial logit, with random sampling of alternatives from the universe of available (vacant)
housing units, including those units vacated by other movers in the current year.

The model architecture allows location choice models to be estimated for households stratified by income
level, the presence or absence of children, and other life cycle characteristics. Alternatively, these effects
can be included in a single model estimation through interactions of the household characteristics with the
characteristics of the alternative locations. The current implementation is based on the latter, but is general
enough to accommodate stratified estimation, for example by household income. The variables used in the
model are drawn from the literature in urban economics, urban geography, and urban sociology. An initial
feature of the model specification is the incorporation of the classical urban economic trade-off between
transportation and land cost. This has been generalized to account not only for travel time to the classical
monocentric center, the CBD, but also to more generalized access to employment opportunities and to
shopping. These accessibilities to work and shopping are measured by weighting the opportunities at each
destination zone with a composite utility of travel across all modes to the destination, based on the logsum
from the mode choice travel model.

These measures of accessibility should negate the traditional pull of the CBD, and, for some population
segments, potentially reverse it. In addition to these accessibility variables, we include in the model a net
building density, to measure the input-substitution effect of land and capital. To the extent that land near
high accessibility locations is bid up in price, we should expect that builders will substitute capital for land
and build at higher densities. Consumers for whom land is a more important amenity will choose larger
lot housing with less accessibility, and the converse should hold for households that value accessibility more
than land, such as higher income childless households.

The age of housing is considered for two reasons. First, we should expect that housing depreciates with
age, since the expected life of a building is finite, and a consistent stream of maintenance investments are
required to slow the deterioration of the structure once it is built. Second, due to changing architectural
styles, amenities, and tastes, we should expect that the wealthiest households prefer newer housing, all else
being equal. The exception to this pattern is likely to be older, architecturally interesting, high quality
housing in historically wealthy neighborhoods. The preference for these alternatives are accommodated
through a combination of nonlinear or dummy variable treatment for this type of housing and neighborhood.

A related hypothesis from urban economics is that, since housing is considered a normal good, it has a
positive income elasticity of demand. This implies that as incomes rise, households will spend a portion of
the gains in income to purchase housing that is more expensive, and that provides more amenities (structural
and neighborhood) than their prior dwellings. A similar hypothesis is articulated in urban sociology in
which upward social mobility is associated with spatial proximity to higher status households. Both of
these hypotheses predict that households of any given income level prefer, all else being equal, to locate
in neighborhoods that have higher average incomes. (UrbanSim does not attempt to operationalize the
concepts of social status or social assimilation, but does consider income in the location choice.)

The age hypothesis and the two income-related hypotheses are consistent with the housing filtering model,
which explains the dynamic of new housing construction for wealthy households that sets in motion a chain
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of vacancies. The vacancy chain causes households to move into higher status neighborhoods than the ones
they leave, and housing units to be successively occupied by lower and lower status occupants. At the end of
the vacancy chain, in the least desirable housing stock and the least desirable neighborhoods, there can be
insufficient demand to sustain the housing stock and vacancies go unsatisfied, leading ultimately to housing
abandonment. We include in the model an age depreciation variable, along with a neighborhood income
composition set of variables, to collectively test the housing filtering and related hypotheses.

Housing type is included in the model as a set of dummy variables for alternative development types.
Development types correspond to the density and land use mix within a cell, with multiple categories of
residential development, and mixed use development encompassing both commercial space and residential
housing. These are discussed further in Section 3.5 describing the real estate development model.

One of the features that households prefer is a compatible land use mix within the neighborhood. It is
likely that residential land use, as a proxy for land uses that are compatible with residential use, positively
influences housing bids. On the other hand, industrial land use, as a proxy for less desirable land use
characteristics, would lower bids. There is some evidence that mixed use neighborhoods that contain retail
and services, in the form advocated by proponents of new urbanist or neotraditional neighborhood design,
are positively valued. We test this using the proximity of retail employment within walking distance.

The household location model is estimated using a random sampling of alternative locations, as is the case
in the employment location model. In application, each locating household is modeled individually, and a
sample of alternative cell locations is generated in proportion to the available (vacant) housing. Monte Carlo
simulation is used to select the specific alternative to be assigned to the household, and vacant and occupied
housing units are updated in the cell.

The market allocation mechanism used to assign households and jobs to available space, then, is not done
through a general equilibrium solution in which consumers and suppliers optimize across all alternatives based
on perfect information, and zero transaction costs, with prices on all buildings at each location adjusting to
the general equilibrium solution that perfectly matches consumers and suppliers to clear the market. Rather,
the solution is based on an expectation of incomplete information (we sample alternatives) and nontrivial
transaction and search costs (only a fraction of jobs and households move annually), so that movers attempt
to obtain the most satisfactory location from the sampled vacant real estate stock. Prices respond at the
end of the year to the characteristics of locations and the balance of demand and supply (vacancy rates) at
each location.

The independent variables can be organized into the three categories of housing characteristics, regional
accessibility, and urban-design scale effects as shown below.

• Housing Characteristics
Prices (interacted with income)
Development types (density, land use mix)
Housing age

• Regional accessibility
Job accessibility by auto-ownership group
Travel time to CBD and airport

• Urban design-scale (local accessibility)
Neighborhood land use mix and density
Neighborhood employment
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3.5 Real Estate Development Model

3.5.1 Data

The real estate developer model simulates the construction of new real estate, either through the construction
of new development or the intensification or conversion of existing development. The data is structured as
grid cells, currently specified as 150× 150 meters in resolution (though this is a specification issue and not a
restriction in the software). Parcel data is preprocessed to obtain the intersection of parcels and grid cells,
and then to construct a composite representation of the real estate development within each cell. Cells are
then classified on the basis of their real estate composition, into ‘Development Types’, as shown in Table 1.
The classification is based on the number of housing units in a cell, and the quantity of nonresidential
square footage in the cell. Cells containing some housing and almost no nonresidential square footage
are considered residential in character. Those containing a diverse mixture of housing and nonresidential
floorspace are considered mixed-use, and those cells containing principally nonresidential square footage are
further classified into commercial, industrial or governmental types.

The data to estimate the coefficients for the developer model is derived from preprocessing the parcel and
grid data, making heavy use of the year built values of the existing development in the assessor records. The
data preparation procedure imputes year built values for those records for which it is missing by examining
the surrounding cells of the same type and drawing from the distribution of observed values. Once the data
is complete, historical development ‘events’ are identified for some user-specified period of time, and these
events are extracted to a file for further analysis. Events, within this framework, are any changes in the
real estate development within a cell that is identified by examining the year built values within the data.
This means that the procedure is capable of identifying any new construction that has a year built occurring
within the specified time frame. However, it does not identify events that involve the demolition of buildings
at some time in the past, since normally there is no record of such demolished buildings within the current
assessor database. This procedure could be augmented with data derived from building demolition and
permit records, but that has not been accounted for in the current specification.

The result of this procedure, then, is the production of a set of development events that represent all observed
transitions between any pairs of development types within each year of the specified historical time frame.
The time slice for determining the existence of an event is annual, since this is the limit of the information on
the vintage of real estate. Also, some development events may be observed in the data that do not indicate
a change of development type, but rather an intensification of use within the range specified in the definition
of the development types.

3.5.2 Structure

The developer model is structured to predict the probability within a single simulation year of a grid cell
experiencing a development event, and if it does experience such an event, identifying the type of event that
is most likely. A multinomial logit model is used to estimate these probabilities. Once these probabilities are
estimated for a grid cell, commitment of development is simulated using a Monte Carlo sampling process.
Implementation of the development takes place by using a development template to obtain the most likely
characteristics of the resulting development project within the cell, including the number of housing units,
square feet of commercial, industrial and government space, improvement value, and construction schedule.
These commitments are then added to the ‘development event’ queue, to be built (added to the database)
as scheduled.

Constraints on development outcomes are included through a combination of user-specified spatial overlays
and decision rules about specific types of development allowed in different situations. Each cell is assigned
a series of overlays through spatial preprocessing using GIS overlay techniques. These overlays can be
used to assign user-specified constraints on the type of development that is allowed to occur within each
of these overlay designations. The constraints are indicated as allowed conversions between each land use
plan designation and each development type in a file supplied by the user as part of the construction of a
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DevType Name Units Sqft Primary Use
1 R1 1 < 1, 000 Residential
2 R2 2 - 4 < 1, 000 Residential
3 R3 5 - 9 < 1, 000 Residential
4 R4 10 - 14 < 2, 500 Residential
5 R5 15 - 21 < 2, 500 Residential
6 R6 22 - 30 < 2, 500 Residential
7 R7 31 - 75 < 5, 000 Residential
8 R8 ≥ 76 < 5, 000 Residential
9 M1 0 - 9 1,000 - 4,999 Mixed R/C
10 M2 10 - 30 2,500 - 4,999 Mixed R/C
11 M3 10 - 30 5,000 - 24,999 Mixed R/C
12 M4 10 - 30 25,000 - 49,999 Mixed R/C
13 M5 10 - 30 ≥ 50, 000 Mixed R/C
14 M6 ≥ 31 5,000 - 24,999 Mixed R/C
15 M7 ≥ 31 25,000 - 49,999 Mixed R/C
16 M8 ≥ 31 ≥ 50, 000 Mixed R/C
17 C1 < 10 1,000 - 24,999 Commercial
18 C2 < 10 25,000 - 49,999 Commercial
19 C3 < 10 ≥ 50, 000 Commercial
20 I1 < 10 1,000 - 24,999 Industrial
21 I2 < 10 25,000 - 49,999 Industrial
22 I3 < 10 ≥ 50, 000 Industrial
23 GV ≥ 0 ≥ 0 Government
24 VC 0 0 Vacant Dev
25 UN 0 0 Undevelopable

Table 1: Development Types

scenario for simulation. Those conversions that are contained in this file are not considered in the model.
This is implemented by eliminating them from the choice set for any cell affected by the constraint. These
constraints are therefore interpreted as binding constraints, and not subject to market pressure. Currently,
if users wish to examine the impact of these constraints, they would need to relax a particular constraint
within one scenario and compare the scenario results to a more restrictive policy. The overlays used in the
Eugene-Springfield model application include the following features:

• Land use plan designation

• City

• County

• Wetland designation

• Floodplain/floodway

• Stream or riparian buffer

• High slope areas

• Urban Growth Boundary

The independent variables used in the real estate development model can be organized into categories of site
characteristics, urban design-scale effects, regional accessibility, and market conditions, as shown below:

• Site characteristics
Existing development characteristics
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Land use plan
Environmental constraints

• Urban design-scale
Proximity to highway and arterials
Proximity to existing development
Neighborhood land use mix and property values
Recent development in neighborhood

• Regional accessibility
Access to population and employment
Travel time to CBD, airport

• Market Conditions
Vacancy rates

Using these variables, the real estate development model simulates the probability of each possible transition
from one development type to another, for every cell in the model database. The model proceeds as follows.

T = { (d1, d2) | devtype d1 can transition to devtype d2 }, (25)
Tlt = { d2 | (d1, d2) ∈ T, l ∈ Lt, d1 is the devtype of l }, (26)
Plt = { (d, p) | j ∈ Ttl, p is the probability of transitioning to devtype d at location l }, (27)

where:

T is the set of valid development type transitions,
Tlt is the set of all valid development type transitions at location l at time t,
Lt is the set of all locations at time t,
Plt is the set of probabilities of transitioning to a particular development type at location l at

time t.

The development type for each location is defined to be the outcome of the chosen transition. One probable
transition is one that includes no change.

We can then define the set Ldt of location and development type pairs at time t as follows:

Ldt = { (l, d) | (d, p) ∈ Plt, l ∈ Lt, d is chosen given a Monte Carlo sampling of p } (28)

3.6 Land Price Model

UrbanSim uses land prices as the indicator of the match between demand and supply of land at different
locations and with different development types, and of the relative market valuations for attributes of housing,
nonresidential space, and location. This role is important to the rationing of land and buildings to consumers
based on preferences and ability to pay, as a reflection of the operation of actual real estate markets. Since
prices enter the location choice utility functions for jobs and households, an adjustment in prices will alter
location preferences. All else being equal, this will in turn cause higher price alternatives to become more
likely to be chosen by occupants who have lower price elasticity of demand. Similarly, any adjustment in
land prices alters the preferences of developers to build new construction of various types and densities.

We make the following assumptions:

1. Households, businesses, and developers are all price-takers, and market adjustments are made by
the market in response to aggregate demand and supply relationships. Each responds, therefore, to
previous period price information.
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2. Location preferences and demand-supply imbalances are capitalized into land values. Building value
reflects building replacement costs only, and can include variations in development costs due to terrain,
environmental constraints, or development policy.

3. There is a long-term structural vacancy rate for each type of property, and the relationship of current
vacancy rates to this long-term vacancy rate influences price adjustments.

Land prices are modeled using a hedonic regression [14] of land value on attributes of the land and its
environment, including land use mix, density of development, proximity of highways and other infrastructure,
land use plan or zoning constraints, and neighborhood effects. The hedonic regression may be estimated
from sales transactions if there are sufficient transactions on all property types, and if there is sufficient
information on the lot and its location. An alternative is to use tax assessor records on land values, which
are part of the database typically assembled to implement the model. Although assessor records may contain
biases in their assessment, they do provide virtually complete coverage of the land (with notable exceptions
and gaps for exempt or publicly owned property).

The hedonic regression equation encapsulates interactions between market demand and supply, revealing
an envelope of implicit valuations for location and structural characteristics. These relative prices have
been documented to be relatively consistent over time, with the acknowledgment that the relative values
at specific locations change as their underlying characteristics change [3]. Because the hedonic regression
includes variables that are to be maintained as part of the simulation system, these can be used to update
relative prices over time.

In addition to these relative prices captured by the hedonic regression, the overall price level within the
market for each type of real estate moves over time in response to shifts between supply and demand.
These fluctuations can be tied to the relationship between the actual market vacancy rate and the long-term
structural vacancy rate. When the current vacancy rate falls below the structural rate, price levels rise, and
when the current vacancy rate exceeds the structural level, they fall.

These two effects on prices are combined in the land price model. The estimated hedonic regression equation
is used to establish relative prices, and the intercept of the equation is adjusted based on the relative position
of the current and structural vacancy rate, as follows:

Pilt = α + δ

(
V s

i − V c
it

V s
i

)
+ βXilt (29)

where:
Pilt is the price of land per acre of development type i at location l at time t
V c

it is the current vacancy rate at time t, weighting local and regional vacancy
V s

i is the long-term structural vacancy rate
Xilt is a vector of locational and site attributes
α, δ and β are estimated parameters

Prices are updated annually, after all construction and market activity is completed. These end-of-year
prices are then used as the values of reference for market activities in the subsequent year.

The independent variables influencing land prices can be organized into site characteristics, regional acces-
sibility, urban-design scale effects, and market conditions, as shown below:

• Site characteristics
Development type
Land use plan
Environmental constraints
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• Regional accessibility
Access to population and employment

• Urban design-scale
Land use mix and density
Proximity to highway and arterials

• Market Conditions
Vacancy rates

3.7 User-Specified Events

Given our current understanding, no model will be able to simulate accurately the timing, location and
nature of major events such as a major corporate relocation into or out of a metropolitan area, or a major
development project such as a regional shopping mall. In addition, major policy events, such as a change in
the land use plan or in an Urban Growth Boundary, are outside the range of predictions of our simulation.
(At least in its current form, UrbanSim is intended as a tool to aid planning and civic deliberation, not
as a tool to model the behavior of voters or governments. We want it to be used to say “if you adopt the
following policy, here are the likely consequences,” but not to say “UrbanSim predicts that in 5 years the
county will adopt the following policy.”)

However, planners and decision-makers often have information about precisely these kinds of major events,
and there is a need to integrate such information into the use of the model system. It is useful, for example,
to explore the potential effects of a planned corporate relocation by introducing user-specified events to
reflect the construction of the corporate building, and the relocation into the region (and to the specific site)
of a substantial number of jobs, and examine the cumulative or secondary effects of the relocation on further
residential and employment location and real estate development choices. Inability to represent such events,
in the presence of knowledge about developments that may be ‘in the pipeline,’ amounts to less than full
use of the available information about the future, and could undermine the validity and credibility of the
planning process. For these reasons, support for three kinds of events has been incorporated into the system:
development events, employment events, and policy events.

The software architecture implements simulated events generated by the model components, each of which
are time-stamped to occur at a specified time in the future. The user-specified events leverages this facility
of the model coordinator within the software architecture, to scan for user specified events in a series of
input files prepared by the user. The user defines events according to a specified format, indicating the cells
affected, the date at which the event should occur, and the other relevant attributes of the development,
employment, or policy event. The model coordinator implement these events at the beginning of the specified
year, prior to generating simulated events in the model components.

4 Conclusion

This paper provides a detailed description of the implementation of version 1.0 of UrbanSim, a land use
model system designed to integrate with travel demand models in support of metropolitan land use and
transportation planning and growth management. The model system is operational and has been applied in
three metropolitan areas in the U.S. When released on the Internet as Open Source software in the second
quarter of 2000, it was downloaded over 300 times in countries spread over five continents. The model system
is undergoing continuous development, and is available at http://www.urbansim.org.

Short term (current year) development of the model system is focusing on:

• Developing a graphical user interface for the model,
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• Develping visualization tools for comparing scenario results,

• Developing a software system for data integration and synthesis for applying the model system in other
locales using available data,

• Developing a design for an extended model system that integrates household choices of activity and
travel pattern, vehicle ownership, job location and residential location, essentially dissolving the arti-
ficial distinction between land use and travel demand models.

The longer-term research agenda includes:

• Further developing the software architecture to support multi-agent microsimulation efficiently, and
developing a high level model specification language;

• Exploring new model structures and estimation techniques, such as Bayesian networks [8], that may
provide greater flexibility in representing the complex choice behavior and interdependence than has
been feasible in either random utility maximization or decision heuristic approaches to date;

• Developing new model components representing environmental processes and impacts, including land
cover change, water demand, and nutrient emissions.

The UrbanSim project represents a long-term collaborative research agenda to improve the state of the
practice in metropolitan land use and transportation planning and growth management, and the results
reported here document a significant milestone in this agenda.
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