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Water Demand Forecasting in the Puget Sound Region:  Short and Long-term Models 

 

Ani E. Kame’enui 

 

Chair of the Supervisory Committee: 

Professor Richard N. Palmer 

Department of Civil and Environmental Engineering 

 

Water demand forecasting has become an essential ingredient in effective water resources 
planning and management.  Water forecasts, together with an evaluation of existing 
supplies, provide valuable triggers in determining when, or if, new sources of water must 
be developed.  In the Puget Sound area, this emphasis on accurate water forecasts is 
particularly important.  There is an increased need for water demand forecasts as water 
rights conflicts continue, the area's population grows, the need for instream flows is more 
accurately quantified, and additional uses and needs of water are identified. 
 
Forecasting provides a simulated, though rarely perfect, view of the future.  Forecasting 
water demand is inherently challenging, as the factors that most directly affect water 
demand are difficult to predict.  However, effective water resource planning can account 
for economic, social, environmental, and political impacts on water demand.  Though 
water demand models assume various forms, models developed in this research address 
integrated approaches to both short-term (up to six months) and long-term (decades into 
the future) models.  These models developed six-month demand forecasts including 
National Centers for Environmental Predictions (NCEP) climate variability for the 
Seattle, Tacoma, and Everett regions.  This research also considers, if modeled 
successfully, that a spatially disaggregated model based on per capita, economic, and 
climate variables could provide utilities the ability to micromanage water use, identify 
specific problem areas, and negotiate urban development based on resource supply.  
Three methods in modeling highly disaggregated water use databases are presented in 
support of establishing a renewed framework for a Seattle long-term water demand 
model.  Finally, this research also considers definite applications of the models presented 
and future investigations that would strengthen the existing study. 
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Chapter 1.  Introduction 
 
Early settlers in the United States found that “everywhere one turned, one saw water, 

cheap water, inexhaustible water, and when there were more virgin rivers and aquifers to 

tap, the illusion was temporarily real” (Reisner, 1993).  Where adequate rainfall, 

snowmelt, and groundwater met the needs of a young nation, this vision was accurate.  

However, as settlers overwhelmed the west, they encountered an environment that was 

more hostile and extreme than the east and where climate variability resulted in decade- 

long droughts.  The history of water resources in the west from the early to mid-twentieth 

century is a tale of the development of dams and supply systems.  These systems were 

constructed to protect growing agricultural and municipal interests from the devastating 

impacts of droughts.  During this time, supply capacity was constructed for both current 

and anticipated demands, and there was little evaluation of the potential negative impact 

of providing water for all demands. 

 

Today, water demand forecasting has become an essential ingredient in effective water 

resources planning and management.  Water forecasts, together with an evaluation of 

existing supplies, provide valuable triggers in determining when, or if, new sources of 

water must be developed.  However, the cost of securing new water supplies has grown 

dramatically.  The recognition of the negative impacts of water withdrawals on the 

aquatic ecosystem has also grown.  The importance of accurate estimates of future water 

demands and their role in public planning is now well recognized.   

 

In the Puget Sound area, this emphasis on accurate water forecasts is particularly 

important.  Though the region continues to grow in population, water demand within the 

region has shifted.  There is an increased need for water demand forecasts as water rights 

conflicts continue, the area’s population grows, the need for instream flows is more 

accurately quantified, and additional uses and needs of water are identified.  Though 

municipal water supply plans from the 1970s and 1980s anticipated dramatic increases in 
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water demands in the region, demand has decreased in average per capita consumption 

and in total municipal and industrial demand in the region.  In the winter of 2003, the 

region experienced the water demands similar to those in the mid-1970s of Seattle Public 

Utilities.  This is a result of successful conservation programming and a change in the 

regional attitude toward water use.   

 

Forecasting provides a simulated, though rarely perfect, view of the future.  However, 

accurate forecasts of demands and estimates that anticipate future water use patterns 

rather than simply extending old patterns, extremely valuable in estimating regional 

needs for water.  These demand forecasts can contribute to identifying appropriate 

management alternatives in balancing supply and demand.  Water resource planning must 

account for economic, social, environmental, and political impacts on water demand 

(Kindler and Russell, 1983).  Forecasting water demand is inherently challenging, as the 

factors that most directly affect water demand are difficult to predict.  Viewed in its 

simplest form, future water demands are a function of a region's population, the growth 

or decline of its industrial activity, technological changes, code changes, water pricing, 

and changes in outdoor water use associated with weather and landscaping choices.  

Unforeseen events significantly impact these factors.   

 

For example, changes in international trade policy may affect regional water demand.  A 

change in timber policy may increase the price of timber in the United States, making it 

less competitive on the global market.  This could result in the closure of a large 

industrial mill and the elimination of its water demand.  Water saving technology in 

household or industrial equipment, such as dishwashers, washing machines, or toilets can 

also markedly change water use.  Forecasting such broad impacts and technological 

changes is difficult.  Figure 1 presents forecasts of water demand made by the City of 

Seattle in 1968 and in 1980.  In contrast with actual demands, forecasts have significantly 

overestimated future demands.  These results indicate that poor model inputs can result in 
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very poor output.  During the 1970s and 1980s the region was expected to grow 

dramatically and regional resource managers were eager to meet these demands. 

 

Demand forecasts:  1968 & 1980 Seattle Water Plans; 2001 Outlook
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Figure 1.  Graphical representation of Seattle water demand forecasts vs. actual 
demand, according to the 1968 and 1980 water plan documents. 

 

Water demand models assume various forms.  Models can be aggregated into simple and 

pliable models or disaggregated by region, population, or location.  Models also vary in 

the timeframe of the data included and the breadth of the processes modeled.  This thesis 

addresses both short-term (up to six months) and long-term (decades into the future) 

water demand forecasts in the Puget Sound region.  The thesis will illustrate the history 

and future of forecasting models and their value. 

 

The original scope of this research included a long-term, spatially distributed water 

demands for the city of Seattle.  If modeled successfully, a spatially disaggregated model 

based on per capita, economic, climate, as well as spatial variables would provide utilities 

the ability to micromanage water use, identify specific problem areas, and negotiate 

urban development based on resource supply within the city.  In addition, this project 
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sought to develop six-month demand forecasts including National Centers for 

Environmental Predictions (NCEP) climate variability for the Seattle, Tacoma, and 

Everett regions. 

 

Both the long- and short-term demand models developed in this research were created 

through multiple regression analysis, a common approach to modeling water demands.  

Water demand forecasting requires extensive data.  The work presented here represents 

not only modeling successes and difficulties, but also the recruitment and creation of 

databases critical to these attempts.  While this research may not pioneer a new effort in 

water resources research, as regional utilities already use models similar to those 

presented here, the research acknowledges a need for improved models using more 

effective model variables, and increased model accuracy created by personnel outside the 

utility.   

 

This thesis presents the data, methods, results, and applications of demand forecasting 

models for the Puget Sound.  These models are valuable in creating accurate regional 

supply and demand estimations, infrastructure claims, and conservation strategies.  The 

improved accuracy and independent variable inclusion will provide more accurate 

estimations of regional demand.  This study also provides an opportunity to expand on 

regional forecasting techniques, question and validate the philosophy behind forecasting, 

and make recommendations for future regional demand forecasting efforts.    

 

The demands on water resources in many regions of the world exceed supplies.  As 

resource managers and modelers, the task is not to accommodate or stifle these growing 

needs, but to design a system that can accommodate these changes in the future.  This is 

only possible with a demand forecasting model that effectively incorporates changes in 

the social, economic, and environmental features in predictions of future water 

consumption in a growing region.   
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Chapter 2.  The Creation, Value, and Limits of Demand Forecasting 

 
A common characteristic of water resources planning is its failure 
to anticipate change. 

-Sewell, 1978 
 

Because it is difficult to anticipate change in human and natural systems, resource 

engineers have developed predictive models that guide our management of water supply 

and demand.  Predictive models have become commonplace in all phases of planning, 

providing resource managers guidance for the various possible futures (Law and Kelton, 

2000).  Both skeptics and supporters of the science of forecasting question the 

philosophy, value, and application of forecast methods.  With models as our most current 

and reliable tools to forecasting future climate and water resources, resource management 

often depends on them.  This chapter addresses the philosophy of forecasting, how 

forecasts are created, and their value and limitations of forecasts in water resource 

planning.   

 

The Philosophy of Demand Forecasting 
 

Caswell (1976)1 addressed the fundamental duality of model as 
scientific theory versus model as engineering practice by 
differentiating the theoretical component from the operational 
component of a model.  He distinguished two general purposes for 
which models are constructed:  understanding (which he equated 
with theoretical models) and prediction (Rykiel, 1996).   

 
According to Caswell and Rykiel, the success of simulation models results in both an 

improved understanding of the modeled system and a useful predictive tool.  Similarly, 

Pace suggests the “interaction of prediction with … understanding” results in successful 

model construction (2001).  While confident in his convictions, Pace also notes that no 

singular philosophy guides simulation science.  Though predictive models are key 

 

 

1 From Rykiel (1996):  Caswell, H.  1976.  The validation problem.  Systems Analysis and Simulation in 
Ecology.  Vol. IV.  B. Patten, ed.  New York, NY:  Academic Press. 
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components in the sustainability of natural resources, there is no science or philosophy 

that absolutely guides model creation and implementation.   Perhaps the philosophies that 

guide model use and the perspectives of several simulation scientists will provide a 

platform for understanding the purpose of forecast models.    

 

The philosophies of Caswell, Rykiel, and Pace suggest that the pursuit of forecasting in 

research areas such as aquatic sciences will improve our understanding of forecast 

modeling.  For example, understanding the variables within forecast models enhances the 

foundation for simulation science.  Pace aptly characterizes the driving forces of 

simulation science:   

First, there is little doubt that human-driven changes in aquatic 
systems will require increased efforts in scientific analysis and 
predictive management in the future.  Second, predictive 
approaches can be guides for research programs helping to keep 
attention focused on ultimate objectives and not small problems.  
Third, if aquatic scientists take the mandate for prediction 
seriously, there should be sufficient dissatisfaction with our current 
abilities to foster new and creative approaches (2001).   

 

Pace suggests that the debate in simulation science is not necessarily over the philosophy 

of modeling or whether forecasting is worthwhile research, but rather, whether the 

models are appropriately validated and verified as effective predictive techniques.  Rykiel 

(1996) and others argue that the value of simulation and forecast models is not 

necessarily determined by an abstract philosophy, but by the validation process that 

complements the models.  Simulation models are used in all sectors of science and are 

critical components of short- and long-term natural resource management, despite the 

inherent unpredictability of the natural world.  The goal is to create a predictive model 

that appropriately captures the uncertainty of the future and guides decision making.  In 

reference to this challenge, Rykiel writes: 
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The crux of the matter is deciding (1) if the model is acceptable for 
its intended use, i.e., whether the model mimics the real world well 
enough for its stated purpose (Giere, 1991)2, and, (2) how much 
confidence to place in inferences about the real system that are 
based on model results (Curry et al., 1989)3.  The former is 
validation, the latter is scientific hypothesis testing (1996). 
 

For decades scientists and engineers have struggled with defining the terms and applying 

the processes of validation, verification, and calibration.  Though never perfectly defined, 

these processes are reviewed in subsequent sections of this paper with regard to the 

models generated for the Puget Sound region.   

 

Because of diverse applications of forecast models, researchers will likely never agree on 

the philosophy that guides simulation science.  In general, however, simulation research, 

particularly in the management of natural resources, should have a positive impact on 

environmental management, as increased foresight should help us manage resources 

appropriately (Pace, 2001).  Though agreement may not exist on how models should be 

validated or what model component is most critical, resource managers will continue to 

depend on forecast modeling in resource planning.   

 

Forecast Methodology  

Successful water demand forecasting is shaped by many components, including an 

understanding of what influences water demand, the availability of essential data, the 

stability of demand and its influences in the past, and how these influences may change in 

the future.  Collecting data and deciding on the format of analysis are critical to the 

development of a reliable and credible model.  A review of the traditional methods of 

water demand forecasting is presented.   

 
2From Rykiel (1996):  Giere, R.N.  1991.  Understanding Scientific Reasoning.  New York, NY:  Harcourt 
Brace Jovanovich College Publishers. 

 

3From Rykiel (1996):  Curry, G.L., Deurmeyer, B.L. and Feldman, R.M.  1989.  Discrete Simulation.  
Oakland, CA:  Holden-Day Publishing.   
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Bauman et al. (1998) suggest that the evaluation of a proper forecasting method include 

the following “correlates of accuracy”4: 

• Is the chosen scope appropriate? 
• Is there adequate disaggregation of the data? 
• Do the model and assumptions (elasticities) reflect expectations? 
• Does the model make use of the resources available? 
• Is the model simple yet effective? 
• Are the model and its assumptions robust? 

These are important criteria as they apply to both the input data and the results of the 

forecast model.  Consideration of these “correlates of accuracy” will likely ensure an 

effective water demand model.   

 

Forecast models are primarily dependent on the data available and the models’ intended 

use.  The complexity of a model hinges on the level of detail in the data required by the 

model.  However, a more complex model is not always more appropriate.  A common 

philosophy in forecast modeling is the Principle of Parsimony or Occam’s Razor, “if a 

simple process suffices, use it” (AWWA, 2001).  If data are limited, a complex model of 

forecasting is not justified.  The most common type of water demand model statistically 

relates future water demand to a series of explanatory variables.  Once the appropriate 

data have been gathered, a forecast method and time-step must be chosen to complete 

model calibration and verification process.  Explanatory variables help to calibrate the 

model by relating historical water demand values to a number of independent variables.  

Once a model has been calibrated, this model can be used to predict future water demand 

values.  

 

Water demand models can have various time-steps:  long (annual or decadal), medium 

(monthly to annual), or short term (hourly, daily, or weekly) (AWWA, 1996).  For the 

purposes of this study, we focus on long- and short-term models.  Long-term models 

 

 

4 From Bauman et al. (1998):  Ascher, W.  1978.  Forecasting Methods:  An Appraisal for Policy-Makers 
and Planners.  Baltimore, MD:  Johns Hopkins University Press.     
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usually focus on forecasts for 10 or more years into the future.  These models help 

managers determine long-term infrastructure or supply changes while considering 

variables such as changes in population, price structure, or climate change.  While these 

forecasts are critical to future management, such forecasts are often highly uncertain.  Of 

course, the greater the forecast time (i.e., 30 years, 40 years), the less accurate the 

forecast or predictive variables tend to be.  Unlike the long-term vision of the decadal 

model, the short-term model typically investigates periods of less than one year.  These 

models may be used to examine the impacts of climate variability and planned seasonal 

operations or financial changes.  Short-term models are often quite accurate, but may be 

plagued by unexpected changes in weather or sociologic factors.  In both long- and short-

term models, factors that influence water are similar.  These factors are also referred to as 

explanatory variables and include population, the economy, technology, climate, water 

price, and conservation programming (AWWA, 1996).  Further evidence of the impact of 

these factors is included in Chapters 3 and 4, as several such factors are included in the 

short- and long-term models for the Puget Sound region.   

 

Two of the most common models for forecasting water demands are based on “per capita 

consumption” and econometric considerations.  The per capita consumption method 

calculates the total water demand per person per year and applies a forecasted population 

factor to project future consumption per person.  Although simple, this method is often 

sufficient for calculating demands and impacts on water supply.  In contrast, econometric 

models use factors such as billing rates and personal income as variables for calculating 

water demands.  As one of the most commonly referenced models in the field of water 

demand forecasting, the US Army Corps IWR-MAIN system incorporates both per capita 

and econometric features (USACOE, 1988).   

 

The IWR-MAIN model disaggregates users of water into individual water use sectors to 

allow detailed analysis of water uses with similar characteristics.  This technique has 

proven useful for over 30 years (Boland, 1997).  The water users, or classes, include 
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residential, commercial, industrial, and unaccounted-for or public water demand.  Within 

each of these classes, water demand is separated into additional classes characterized by 

residential or commercial type.  For example, single family (i.e., one household) water 

demand may be separate from multifamily (i.e., apartment building) water demand, and 

commercial water demand can be separated into a number of groups based on SIC 

(Standard Industrial Classification) code (Boland, 1997).  This approach is often 

considered the most accurate method of determining future water demands.  Chapter 4 

describes the long-term model created for the Seattle residential water demands, based 

partially on the IWR-MAIN framework.  In contrast, a more simplistic, short-term model 

using an expanded per capita approach is discussed in Chapter 3.   

 

Model Applications 

Water demand forecasts are used in many areas of utility planning.  From small utility 

models to long-term interstate resource management, reliable forecasts are critical 

components of water planning and policy.  To be reliable, water demand forecasts must 

include social, economic, and environmental factors.  The use of such forecasts has 

become standard, particularly when considering new water resource supplies.  Water 

demand forecasts are essential to many planning activities including expansion, 

expanding existing distribution systems, preparing contingency plans for droughts, 

evaluating conservation methods, performing sensitivity analysis using different 

assumptions about the explanatory variables, and assessing utility revenues (USACOE, 

1988).  In addition to these applications, forecasts also play an important role in cases 

related to climate change and the Endangered Species Act (ESA).  As climate research 

and water allocations debates over instream habitat and other regulatory requirements 

continue, demand forecasts will be critical to providing information about the future of 

regional water resource demands and how they should be distributed.   

 

Water demand forecasts are essential to current planning in the Puget Sound.  Utilities are 

currently concerned with new supply developments, privatization, and the potential 
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impacts of climate change on water demand.  The issue of climate change and water 

resources has been addressed by water resources and climate research for years (Weiss, 

1990; Boland, 1997; JISAO/SMA CIG, 2003 and in press).  This research raises concerns 

about decreasing snow pack and subsequent decreases in summer streamflow, preserving 

water resources for the future, and changes in water demand due to warmer, drier 

summers.  Research in the Bull Run watershed serving Portland, Oregon suggests that by 

the year 2040, 18% of the impact of climate change will be caused by changes on water 

demands (Palmer and Hahn, 2003).  Though the impacts of climate change in the Puget 

Sound region are less understood, the short-term demand model development, discussed 

in Chapter 3, demonstrates the clear link between climate and water demand (see Figure 

3) in the Seattle region.  Changes in demand because of climate change may affect the 

way utilities proceed with supply development and conservation programming.  Other 

water resource issues that would benefit from water demand forecasts include water 

conflicts throughout the West.  For example, California continues to struggle with limited 

state resources, a contract battle over the Colorado River and growing urban populations, 

demand forecasts are germane to decisions about water transfers, contract battles, and 

new techniques in water conservation in agriculture.   

 

Though water demand forecasts are rarely used as the only determining factor in resource 

planning, forecasts can prevent utilities from making needless investments and policy 

errors in development (AWWA, 1996).  Forecasts also provide an opportunity to 

organize important utility information and demand data.  Finally, with increasing acclaim 

and accuracy, demand forecasting may guide communities toward a more sustainable 

future in water resources.   

 

Limitations and Uncertainty in Forecast Modeling 

Though the capabilities of forecast modeling are many, they do not, unfortunately, 

eliminate the inherent challenges of simulation science.  These challenges include 

modeling a complex natural environment, uncertainty in future sociologic variables, 
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compounded uncertainty from other forecast variables (e.g., climate), inherent 

uncertainty in data analysis, and difficulties in model validation.   

 

Uncertainty is a feature in the human environment, as in the natural environment.  Our 

inability to predict future sociologic or economic variables that will affect water demand 

is definitely a limiting factor in simulating future demands (Ng and Kuczera, 1993).  

Though resource agencies (e.g., Puget Sound Regional Council, PSRC) create forecasts 

of future social and economic conditions, these predictions contain variables with 

significant uncertainty, adding error to the water demand forecast analysis.  This is also 

true for climate forecasts.  The use of forecasted climate variables in water demand 

models helps to model water demand under a variety of climate change scenarios.  With 

regard to such models, Boland states “the range of predicted outcomes reflects at least a 

portion of the range of uncertainty regarding future weather” (1997).  There is a 

considerable degree of uncertainty associated with climate forecasts.  Uncertainties in 

climate, social, and economic variables are often the result of an inaccurate understanding 

or downscale of a climate model, as well as unexpected changes in the social and 

economic structure as a result of cultural trends.  These uncertainties are often 

unpreventable and when combined may result in a model limited by both known and 

unknown errors and assumptions.  Measuring model skill and error may help quantify 

this uncertainty; however, these measures will not necessarily identify the specific causes 

of, or solutions to, model inaccuracy. 

 

Once researchers have selected a forecast methodology and model, progress is often 

hindered by difficulties with model verification, validation, and calibration.  Rykiel 

claims that when validating a model, three prior specifications are necessary:  The 

purpose of the model, the criteria the model must meet to be acceptable, and the context 

of operation (Rykiel, 1996).  If these three areas are not clarified before model execution, 

the verification and validation of a model can limit model implementation.  Rykiel’s 

concerns are rooted in the possibility of using models that are faulty despite their 
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appearance as capable or correct.  On this issue, Rykiel notes that fellow researcher B. 

van Fraassen has argued “that the goal of scientific theories is not truth (because that is 

unobtainable) but empirical adequacy” (1996).  Rykiel argues that verification for 

“empirical adequacy” can be quite difficult because of undetectable errors in the data and 

the unpredictable nature of future conditions.   

 

Despite these limitations, forecast models provide a glimpse of the future of water 

resources.  Though these glimpses are uncertain and limited, the option of not including 

the forecast is less appealing than recognizing model errors.  With this need for guidance 

in mind, the following chapters present two water demand models.  Chapter three 

includes short-term water demand forecasts for Seattle and other Puget Sound regions.  

These forecasts provide planning assistance through the incorporation of climate 

variability forecasts and other valuable explanatory variables.    
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Chapter 3.  Short-term Water Demands 

 

Short-term demand projections help water managers make more informed water 

management decisions to balance the needs of water supply, residential and industrial 

demands, and instream flows for fish and other habitat. Short-term demands aid utilities 

in planning and managing water demands for near-term events (Jain and Ormsbee, 2002).  

For the purposes of this thesis, the near term is defined as a period within the next six 

months.  Short-term forecasting can also help managers make decisions during 

unexpected climate conditions, emergencies, or unanticipated financial change.  Short-

term forecasting models are typically based upon recent trends and actual conditions.  For 

water demands, factors considered the most influential include recent water demands, 

forecasted climate, seasonal considerations, and water management policies.  Demand 

models consider these factors and also incorporate population growth, water rate changes, 

and regional conservation efforts.  Despite potential errors in its narrow perspective on 

daily weather or human behavior, short-term method of modeling water demands play an 

important role in seasonal water resource management techniques (Bauman et al., 1998; 

Billings and Jones, 1996).   

 

The short-term demand models described in this thesis were developed to meet several 

needs:  to provide regional utilities improved foresight in system operations, to 

investigate water demands during the drought conditions of 2003, and to contrast the 

framework for developing such demands to the techniques used for long-term demands. 

The goal of the short-term demand forecasting model for the Puget Sound region is to 

predict demands during 2003 and early 2004, using 20 different climate (temperature and 

precipitation) ensembles.   

 

Seattle Public Utilities (SPU) developed a weekly model for measuring demand 

variability relative to weather for a reliability study during 1994-1996, but like other 

short-term models developed after this study, this model is no longer used.  Current short-
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term demand modeling at SPU provides forecasts on an hourly or daily time step using a 

neural network modeling system.  This model can be aggregated to a weekly time-step 

for operational planning, but it is commonly used on a shorter time-step (Kersnar, 2003).  

According to SPU model operators, these forecasts are very accurate and are used in 

regular management and system operations.  Because of the short foresight of these 

forecasts, they do not incorporate climate variability and are unable to accurately forecast 

demand beyond a single day or operating period (She, 2003).  The response from SPU 

managers to adopting a short-term weekly water demand model has been positive, as they 

recognize the potential impact of this effort on seasonal management of the system (SPU, 

2003).  This chapter will discuss methods and development of new short-term models for 

Seattle, Tacoma, and Everett, using data provided by Seattle Public Utilities, Tacoma 

Water, and the City of Everett.   

 

Defining the Short-term Model Structure 

Though there are several methods for creating short-term demand models.  The short-

term model used for all three systems (Seattle, Tacoma, Everett) in this research is a 

weekly time-step, multiple regression model run calibrated for four independent seasons.  

The format of the regression model is log linear, shown in Equation 1 below.  

Coefficients A through G are detailed in Table 2 below.   

 

Equation 1. 

Water Demand =  7654321 xxxxxxx GFEDCBA* ⋅⋅⋅⋅⋅⋅⋅β

Take the natural log of both sides: 

Ln(Water Demand) = β* + x1·Ln(A) + x2·Ln(B) + x3·Ln(C) + x4·Ln(D) + x5·Ln(E) 
+ x6·Ln(F) + x7·Ln(G) 
*The value of the intercept is derived in the regression analysis 

 

The short-term demand model is a function of a number of independent variables.  Table 

1 identifies the variables used in the short-term demand model.    
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Table 1.  Short-term model variables.   

Dependent variable System (SPU)-wide weekly averages 
Independent variables A. Temperature (average weekly max) (Tmax) 

B. Precipitation (weekly average) 
C. Winter water use 
D. System user population** 
E. Water rate/price*** 
F. Temperature (max) (one-week lag) 

 

G. System-wide weekly average (one-week lag) 
**Information for this variable was only available for the Seattle model.   
***Water rates varied seasonally.  Off-peak rates applied to September-May 
(1989-1994) and October-May (1995-2003); on-peak (2nd block) rates were 
applied to June-August (1989-1994) and June-September (1995-2003). 

 

The seasons used in the model were selected to mimic the drawdown and refill time-

periods utilized by SPU (Table 2) and are generally appropriate for Tacoma and Everett 

(Figure 2).   

 

Table 2.  Short-term model seasons defined. 

Summer June – August 
Spring March – June  
Fall September – October 
Winter November – February 

 

 
Figure 2.  Combine Reservoir Storage, Seattle Public Utilities, August 2003. 
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A primary goal of the short-term model is to capture both the seasonal patterns of water 

demand and the weekly variability that is associated with climate.  Jain and Ormsbee 

(2002) suggest that daily time-step models are likely to be highly inaccurate because of 

the unpredictability and variability of various parameters.  Daily models can also be less 

appropriate for management decisions that are made less frequently.  In contrast, weekly 

models provide strong seasonal signals without the extremes represented by daily values.  

Data used to calibrate and validate these models include the period from January 1989-

September 2003.  Data for 1992 in the Seattle model were removed from analysis 

because of water curtailments and restrictions instated by SPU during the 1992 drought.     

 

Determination of the independent variables used in the model (Table 1) was completed 

based on recommendations from published demand models (USACOE, 1988; SPU, 

2003), natural indicators and predictors of water demand (e.g., climate variables), as well 

as through trial-and-error of regression analyses.  Because weather conditions affect 

outdoor water use, such conditions were captured using maximum daily temperature and 

precipitation.  It is evident these climate factors are primary drivers of water demand in 

this region (Figure 3).  In addition to climate variables, service area population and water 

rate are common to most water demand models and are critical components in 

determination of future use.   
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Seattle summer water demand vs. Temperature (1989-2003)
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Figure 3.  Seattle summer water demand plotted against the average weekly 
maximum temperature (Tmax) for 1983 through 2003.  Summer months are June 
through August. 

 

The lagged variables of Tmax and system-wide weekly average water use were used as 

additional predictive variables.  These are lagged by one week, as we assume that water 

use is dictated not only by the current week, but also by the temperature and water use 

that occurred in the prior week.  

 

The winter water use term is used to represent “base” demand.  In the Puget Sound 

region, winter water use does not include watering lawns, flushing Green Lake, regular 

washing of cars, or the watering of public and private parks.  The base demand provides a 

foundation on which to forecast other seasonal water use.  In addition, changes in winter 

water demand are a good estimate of indoor water conservation (Weber, 1993).  Winter 

demands for the SPU water users are shown in Figure 4 below.   
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SPU Winter water use (1983-2003)
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Figure 4.  Annual average SPU winter (Nov.-Feb.) water demand.

 

This figure demonstrates the effects of natural and programmed conservation on Seattle’s 

average winter water demand (November-February) (AWWA, 2001).  “Naturally 

occurring conservation” includes the impacts of SPU’s conservation programs and 

plumbing code and/or fixture changes.  “Programmed conservation” represents the power 

of curtailments during droughts (i.e. 1987 and 1992) and mandatory reductions in water 

use.  Curtailments during droughts are reflected in the sharp drops in consumption in 

Figure 4 during those periods.  Plumbing code savings today are primarily continued 

savings from the 1993 plumbing code changes.  These changes are assumed to continue 

through 2020 (Forum Outlook, 2001).   Plumbing code savings commonly occur as water 

savings from changes in piping or other infrastructure implemented by the city or 

managing utility.  Plumbing code changes can also include changes in construction code 

and the required installation of low water use fixtures, such as toilets.  SPU also 

encourages customers to conserve on a regular basis.  Some studies indicate that because 

of customer conservation and fixture changes, post-drought winter water demand per 

household remained more than 10 gpd (gallons per day) lower than pre-drought demands 

for five to nine years (Weber, 1993).  Seattle is currently committed to 1% decrease in 
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demand per year for the next decade, potentially affecting 42% of the area’s population.  

Reductions in demand are evident in Figure 4, despite population growth in the service 

area.  Similar attempts to improve conservation in the Tacoma and Everett regions are 

underway (Outlook 2001:  Section 8; Appendix B).  The Outlook 2001, produced by the 

Central Puget Sound Regional Water Suppliers Forum, indicates a 4.4% increase in 

demand, despite a 27% anticipated increase in regional population.  The baseline winter 

water demand should, over time, reflect these changes though the extent to which 

conservation will be effective is uncertain.  Eventually demands are expected to harden 

forcing conservation to reach a maximum; at this point demands will likely stabilize or 

increase merely due to population.  It is unclear at this time when or the extent to which 

demand hardening will occur.   

 

Sources of Data for Short-Term Model 

The primary sources of data for creating the short-term demand forecasting models are 

the regional utilities.  Bruce Flory from SPU provided a majority of the supporting SPU 

data.  Ron Knoll from Tacoma and Souheil Nasar from Everett provided data from their 

respective utilities.  These data include the system-wide water use database for at least 

1990 through September, 2003, the rate and billing history from 1990 through January, 

2004, and the number of system users from 1980 through 2003 (SPU only).  The SPU 

water consumption data includes the city of Seattle, as well as purveyors outside Seattle.  

These data represent the total water diversions from the Tolt and Cedar Rivers, total 

production from Highline wells, and changes in distribution reservoir storage (Flory, 

2003).  Both Tacoma and Everett demand data include residential demand and industrial 

demand.  The climate variables of average weekly maximum temperatures and weekly 

precipitation values were collected from the Seattle-Tacoma International Airport 

weather site (COOP ID 457473).  These data were collected on the National Climate 

Data Center (NCDC) website from the National Oceanic and Atmospheric 

Administration (NOAA) database.   
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Model Calibration and Validation 

The short-term demand models were calibrated using data for each season from 1989-

1998 for the Seattle, Tacoma, and Everett regions.  Figures 5 and 6 illustrate examples of 

the calibration of the model, while Figures 7 and 8 provide examples of the validation of 

the model.  The calibration of the summer and fall seasons demonstrates the correlation 

between the historic and modeled values for the Seattle region, while the validation 

illustrates how well the model actually forecasts demands.  Validation of the model was 

completed with a weekly forecast using data from 1999-2003.  These analyses produced 

the following relationships and coefficients to be applied to Equation 1 (above) in 

creating weekly as well as four six-month forecasts.  See Appendix A for results of the 

Seattle models not included here, and Appendix B for results from the Tacoma and 

Everett regions.      

 

Summer Calibration Model:  1989-1998 (R2 87.5%)

125

175

225

275

1989 1989 1990 1991 1993 1994 1995 1996 1997 1998
time

de
m

an
d,

 m
gd

Actual
Predicted

 
Figure 5.  Seattle’s summer water demand (system-wide) model calibration:  
actual (historic) versus predicted model.  
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Fall Calibration Model: 1989-1998 (R2 87%)
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Figure 6.  Seattle’s fall water demand (system-wide) model calibration:  actual 
(historic) versus predicted model.  

 

Summer validation:  1999-2003 (R2 81.6%)
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Figure 7.  Summer water demand (system-wide) model validation:  actual 
(historic) versus predicted model for the Seattle region.  
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Fall validation:  1999-2003 (R2 85.2%)
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Figure 8.  Fall water demand (system-wide) model validation:  actual (historic) 
versus predicted model for the Seattle region.  

 

The calibration of the summer and fall models reveals a model that is highly accurate for 

at least the model years of 1989-1998.  In addition, the validation figures confirm that the 

model performs well.   

 

Seventy percent of the data, years 1989-1998, were used for the calibration of Seattle’s 

short-term model.  Validation was performed using data from 1999-2003.  Further 

analysis of the calibration process for the Seattle model reveals that coefficient values 

were robust and varied little during critical seasons, such as summer, regardless of the 

years chosen for calibration.  Discussion of the Tacoma and Everett models and 

coefficients can be found in Appendix B. 
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Table 3.  Short-term model variables and associated coefficients for Seattle 
region.  
 SPRING Value SUMMER Value FALL Value WINTER Value 
β Intercept -4.418 Intercept -16.14 Intercept 0.592 Intercept 3.852 
A Tmax 0.161 Tmax 0.673 Tmax 0.185 Tmax -0.033 

B 
Precip, 
mm -0.036 

Precip, 
mm -0.149

Precip, 
mm -0.066 

Precip, 
mm -0.018 

C wh20 0.310 wh20 0.313 wh20 0.295 wh20 0.247 
D Pop. 0.309 Pop. 1.164 Pop. 0.000 Pop. -0.227 
E $ -0.037 $ -0.112 $ 0.000 $ 0.017 

F 
Tmax, 
lagged -0.013 

Tmax, 
lagged -0.119

Tmax, 
lagged -0.077 

Tmax, 
lagged -0.035 

G 
H2O, 
lagged 0.648 

H2O, 
lagged 0.412 

H2O, 
lagged 0.557 

H2O, 
lagged 0.658 

 

An example of the final regression equation is demonstrated by the Seattle region’s 

spring season model:   

 

Equation 2.  

Ln(Spring Water Demand) = -4.418 + .161·A -.0356·B + .310·C + .309·D - 
.0375·E - .0135·F + .648·G 

 

The coefficients in Table 3 represent elasticities that measure “the effect of a change in 

an independent variable on the dependent variable” (AWWA, 1996).  A positive 

elasticity means that as the value of that variable increases, so does water demand; a 

negative elasticity indicates that as the variable increases, water demand decreases.  For 

example, Seattle’s water price elasticity is greatest in winter and lowest in summer (Table 

3).  During the summer price plays an important role.  The decrease in price elasticity 

during warmer periods indicates that as price increases, water use decreases.  The price 

elasticity of -.112 during the summer indicates that a 1 percent increase in price will help 

decrease water use by 11.2%.   Other coefficients, such as Tmax, also respond differently 

during different seasons.  The positive value of the coefficient suggests that as the 

temperature increases, so does water demand.  The value of the coefficient decreases as 

the seasons cool, suggesting that the variable is more influential during summer than 

winter.  There is an equal but opposite reaction in water demand to the precipitation 
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coefficient, which gets increasingly negative as the seasons warm (as precipitation 

increases, water demand decreases).   

 

The high p-values5 observed in the fall calibration regression indicated that the 

population (p-value:  .63) and water price (p-value:  .93) variables should be removed; 

therefore their value is set to zero when forecasts are completed.  Clearly, each 

coefficient plays a unique and important role in controlling water demand. 

 

Model Application:  Six Month Forecast Variables and Results  

Using the multivariate regression model developed during the calibration of regional 

water demands, four six-month forecasts were created.  These time periods were chosen 

as the appropriate windows to provide information necessary to water supply planning 

during the typical refill and drawdown period (June-November).  In order to complete 

these forecasts, the model required the actual and forecasted values of each explanatory 

variable (Table 3).   

 

If the six-month forecast extended beyond December 2003, several assumptions were 

made with regard to changes in water pricing, population, and winter water demand.  For 

the Seattle model, a 1% increase in the service population was initiated in January 2004, 

as well as a 1% decrease in the winter water use variable and an SPU approved increase 

in the price of water.  The population increase of 1% is an estimate that concurs with SPU 

and other regional documentation6.  A 1% decrease in demand is calculated for the winter 

                                                 
5 P-values are commonly defined as:  “The probability that a variate would assume a value greater than or 
equal to the observed value strictly by chance” (Wolfram Research, 2003).   
 

 

6 The 2001 Puget Sound Regional Water Supply Outlook suggests a 27% increase in population from 2000 
through 2020.  This is an increase of approximately 1.35% each year.  Recent reports by the PSRC also 
indicate our regional growth rate, averaged over the last 5-years, in 2002 to be 1.6% (PSRC, 2003).  In 
addition, documents from the Cascade Water Alliance (Loranger, 2003) suggested a use of 1% annual 
growth in reference to regional supply models.  The use of 1% is an approximation which is substantiated 
by the aforementioned estimates of other models, though it may be an underestimate.  Since this increase 
only occurs for one month (January, 2004) of the forecasted data, the possible underestimation is of small 
concern.     
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water demand variable in January based on the conservation goals of SPU’s 10-year 

(2000-2010) Conservation Program (SPU, 2001).  Similar information regarding 

population and conservation programming for the Tacoma and Everett regions was 

unavailable.  To establish a trend for future base water demands in these regions, the 

future winter water demand variable was altered to reflect a running average of the 

previous five years’ base water demand.  Winter water demand for 2003 was then 

multiplied by this final average factor.7  Though this method is somewhat arbitrary, it 

attempts to find a trend, if any, in the winter water demand in Tacoma and Everett during 

recent years.  Rates for the Tacoma and Everett models increased based on the utilities 

projections for January 2004.   

 
A critical component of the six-month water demand forecasts is the forecasted climate 

information needed to project demands.  Using 20 different NCEP forecasts in a climate 

ensemble, the Tmax and precipitation variables were derived.  These data were provided 

by doctoral candidate Michael Miller of the University of Washington.  The NCEP 

forecasts are developed with the Global Spectral Model (GSM) and consist of six-month 

predictions of temperature, precipitation, and barometric pressure.   

 

Miller and Palmer characterize the climate forecast as follows:  “GSM forecasts use 

current ocean and atmospheric conditions to produce meteorological data at a spatial 

resolution of 1.9º for time-steps between 5 and 15 minutes. Every month, twenty six-

month forecasts are produced.  Each of the twenty is created with slightly different 

assumptions about the initial conditions of the ocean and atmosphere.   NCEP also uses 

the GSM to produce ten hindcasts for each year from 1979 to 1999.  A hindcast attempts 

                                                 

 

7 For example:  Winter water demand in 1998 is 75mgd, 78mgd in 1999, 82mgd in 2000, 74mgd in 2001, 
78mgd in 2002, and 76mgd in 2003.  The difference between 1998 and 1999 is a factor of 1.04, 1.05 
between 2000 and 1999, .90 between 2001 and 2000, 1.05 between 2001 and 2002, and a factor of .97 
separates 2002 and 2003.  An average of these factors is: 1.0044.  Therefore the factor of change between 
the winter water demand in 2003 and 2004 is assumed to be 1.0044; therefore the winter water demand in 
2004 is 76.34mgd.    
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to replicate past conditions by varying the initial conditions of the ocean and atmosphere” 

(Miller and Palmer, 2003).   

 
The large spatial resolution of the GSM requires the model to be corrected to mimic the 

smaller basins represented in these demand forecasting models.  This is accomplished 

with a comparison of the hindcasts to the historic meteorological data.  Furthermore, 

cumulative distribution functions (cdfs) for each data set are compared, and the bias 

within the GSM model is calculated.  The cdfs are then used to change the GSM 

meteorological forecast data into appropriate values for the weather station (SeaTac) 

(Miller and Palmer, 2003).  The result of this downscaling and bias correction process is 

20 forecasts of temperature and precipitation.   

 

As noted, there are 20 climate-variable scenarios; the model generates a forecast for each 

one.  The model produces 20 possible demand forecasts for each of the four six-month 

forecasts:  May-October 2003; July 2003-January 2004; August 2003-February 2004; 

October 2003-March 2004.  Figures 9-12, below, illustrate the range covered by the 

forecasts relative to the actual demand (red) for the same time period.  In addition, a 

forecast using the average temperatures from 1983-2002 is displayed in the green line.  

The black line, displayed in the April forecast, illustrates a forecast using the actual 

temperature and precipitation data for the forecasted period, 2003. 
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April Forecast:  4.29-10.22.03
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Figure 9.  Seattle demand forecast for the weeks of April 29 through October 22, 
2003.   

 
June Forecast:  6.24-12.24.03
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Figure 10.  Seattle demand forecast for the weeks of July 29, 2003 through 
January 21, 2004.   
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August Forecast:  8.26.03-2.11.04
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Figure 11.  Seattle demand forecast for the weeks of August 26, 2003 through 
February 18, 2004.  
 

September Forecast:  10.1.03-3.25.04
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Figure 12.  Seattle demand forecast for the weeks of October 1, 2003 through 
March 25, 2004. 
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The actual data represented in the April, June, and August forecast figures indicate that 

2003 was an outlier.  As the driest (least amount of precipitation) summer on record for 

the Seattle region, water demand reached unexpected peaks during unexpected weeks.  

This was particularly true for the first weeks of June, where 90 degree temperatures 

resulted in peak water use.  Figure 13 aptly displays the high temperatures experienced 

during the summer of 2003.  Because the forecast models were calibrated using data from 

1989-1998, they did not capture the extreme heat of recent summers.  As a result, the 

models were unable to account for extreme summer use.  In contrast, days of record high 

rainfall occurred in mid-October, causing a significant drop in water demand, slightly 

beyond the scope of the September forecast.  When calibrated and validated under less 

extreme conditions, the models perform more accurately.   

 

Error in the 2003 forecasts is also a result of poor NCEP forecasts.  Due to the 

unexpected heat during 2003, the NECP climate forecasts used in the April, June, and 

August water demand forecasts underestimate the temperature during the 2003 summer.  

Though NCEP forecasts are very valuable to water resource forecast models, there are 

periods during the year when climatologists have found NCEP forcasts more accurate.  

For example, Barnston et al. (1999) found NCEP predictions most accurate for 

December, January, February, and March, particularly during El Niño years.  Local 

climatology during spring 2003 indicated a medium-sized El Niño in the Pacific 

Northwest; this signal has dissipated by the fall of 2003.  The Barston et al. study also 

indicates that the predictive skill of NCEP forecasts of summer climate is definitely 

weaker than other seasons.  The gap between the average NCEP temperatures for the 

April forecast and the real temperatures is shown in Figure 14.  Due to the outlying 

temperatures and drought during 2003, it is unlikely that the results of forecasts during 

this year indicate the true value of the short-term model.   
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Average daily temperature maximum:  past vs. present
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Figure 13.  Actual 2003 Tmax plotted against the Tmax average from 1983-2002.  
Data is from the NCDC SeaTac site.   

 
 

Average daily temperature maximum:  NCEP vs. actual
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Figure 14.  Actual 2003 Tmax plotted against the average NCEP Tmax forecast 
for the April forecast.   

 
 

To demonstrate the ability of the forecast to appropriately capture the shape of water 

demands during the April forecast, a three-week moving average of the April forecast 

was also generated.  These averages were calculated to smooth the data, remove the noise 
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created in a weekly model, and illustrate the ability of the model to present forecasts 

during less extreme conditions.  Shown in Figure 15 are the smoothed curves for the 

NCEP forecasts and actual data during the April forecast.   The root mean squared error 

(RMSE) for the three-week moving average April forecast is also included in Figure 21.   

 

Three-week Moving Average:  April Forecast
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Figure 15.  The three-week moving average of Seattle’s demand forecast for 
April 29, 2003 through October 22, 2003. 

 

Short-term Model Hindcasts (1982-1999) 

Inaccuracies in the forecast model during 2003 raise concerns about the applicability of 

the short-term model.  While the forecasts capture the general trend of demand during the 

spring and summer of 2003, the estimate of the total water demanded during this period 

was significantly less than that which occurred.   

 

To estimate the accuracy of the short-term model, the model was tested using the NCEP 

climate hindcasts and regional data for 1989-1999.  Unlike current NCEP climate 
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forecasts, which include 20 different climate ensembles, NCEP hindcasts only include 10 

scenarios.  Population, rate, and water demand data were all collected from SPU 

databases.  The short-term demand hindcasts are compared to the actual demand during 

different seasons of the 1989-1999 record.  Because the primary concern is predicting 

summer demands during the utility’s primary drawdown period (Figure 2), the hindcasts 

are for the April (May-October) forecast period.   

 

Using the 1989-1999 hindcast results for the April forecast period, Table 4 includes the 

RMSE (root-mean-squared-error) and R2 values for the total water demands of the 

average short-term hindcast versus the actual demand during May-October.   

 

Table 4.  Summary statistics for 1989-1999 hindcasts. 

Year RMSE R2 (%) 
1989 16.65 64
1990 24.19 69
1991 22.26 54
1992 38.58 36
1993 22.74 31
1994 17.17 77
1995 29.76 21
1996 18.78 73
1997 21.69 58
1998 16.50 81
1999 20.43 54

 

The RMSE of the April hindcasts indicate that the model performs fairly well; however, 

many years did not reveal correlations that matched the accuracy of the 2003 short-term 

model calibrations.  This is particularly true for years when SPU instituted mandatory 

curtailments (1991-1992).  Erratic water demands due to curtailments and changing water 

demand behavior during the early 1990s is evident in the R2 values in Table 4.  Clearly 

the model is incapable of modeling curtailments and these are removed from the 

calibration displayed in Figure 16.  An R2 value of 76% in Figure 17 also illustrates the 

ability of the short-term model to forecast total seasonal water demand.  The ability of the 
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short-term model to forecast total seasonal demand is helpful in determining utility 

operations for the critical draw-down and refill periods (i.e. summer and fall).   
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Figure 16.  Calibration of April demand hindcast for each year during 1989-1999.   

 

Total Seasonal Demand:  April hindcast (1989-1999)
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Figure 17.  Total hindcasted water demand for May-October for 1989-1999.   
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As demonstrated by Table 4 and Figures 16 and 17, model calibrations for the 1989-1999 

April hindcasts do not reveal consistently accurate demand predictions.  Because 

temperature and precipitation are critical explanatory variables in the short-term model, 

the hindcast calibrations question the ability of the NCEP climate hindcasts.  The NCEP 

climate hindcasts during 1989-1999 are illustrated in Figures 18 and 19.  Both figures 

compare actual conditions to the average NCEP climate hindcast (temperature and 

precipitation).  These comparisons reveal the “average” ability of NCEP climate 

hindcasts.  It is evident that while NCEP climate hindcasts can predict temperature and 

precipitation with some accuracy, the hindcasts do not capture conditions that exceed 

average expectations.   
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Figure 18.  Actual average temperature during May-October, 1989-1999 
compared to average NCEP temperature hindcast. 
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Average Precip. (April forecast period):  1989-1999
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Figure 19.  Actual average precipitation during May-October, 1989-1999 
compared to average NCEP precipitation hindcast. 

 

The inability of the NCEP climate hindcasts to capture extreme climate conditions is 

particularly evident and troubling during hot and dry conditions.  Demand forecast 

models are predominantly used during drought conditions, when resource managers most 

need assistance for planning resource supply and demand.  The poor performance of the 

NCEP hindcasts indicates that the short-term demand model may be unable to forecast or 

hindcast demand accurately given the tendency of the climate forecasts to be simply 

average.  The NCEP hindcasts are not, however, an absolute indication of the accuracy of 

future climate forecasts.  The results of the NCEP hindcasts appear worse than the NCEP 

climate forecasts used in the 2003 demand model (Figures 9-12).  The culprit of the error 

in the 2003 demand forecasts seems to be the unexpected hot and dry conditions during 

the summer of 2003.  Continued research in downscaling techniques and the applications 

of NCEP climate forecasts will help improve the reliability of the climate data as well as 

the models (e.g., demand forecasting) they are used in.  In estimating the skill and error in 

the 2003 demand forecasts, a unique skill metric, as well as the RMSE were examined.  
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Skill and Error in Six-month Short-term Model Forecasts 

Alan Hamlet (2003) developed a unique skill metric for water resource-related forecasts.  

Hamlet has attempted to create a skill metric that adequately ranks forecasts in the 

context of water resource management.  Hamlet’s revised metric, an expansion of more 

common skill metrics found in text such as Wilkes’ (1966) Introduction to Numerical 

Analysis, is designed to reward data accuracy and punish spread in forecasts.  This skill 

metric should indicate the value of forecasts in water resource management scenarios, as 

it provides an opportunity to compare forecasts to one another.  This may help resource 

managers choose forecast and management techniques based on the level of skill 

displayed by the forecast.  The metric takes the following form: 

 

Equation 3.   

Skill = 1 - [∑(forecast - observed)2/N / ∑(historical - observed)2/M ] 

 

Where the forecast data represent the six-month forecast period, historical represents the 

weeks of years 1984 through 2002 (excluding 1992), observed are the actual demand 

values during the forecasted period, N is the number of ensembles in the forecast, and M 

is the number of years of historical observation for each week.  The metric represents the 

skill of the forecast during each week of the forecasted period.   
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Comparison of Forecast Skill
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Figure 20.  Skill metrics for the April, June, and August forecasts.  Maximum 
skill possible is 1, minimum skill possible is infinite. 

 
This metric illustrates the general improvement of forecasts over the forecasting periods 

(e.g., June’s forecast has higher skill than April).  Naturally the forecasts should improve 

as the forecasted period increases its proximity to the present.   Figure 20 confirms this 

expectation while illustrating the power of unexpected climatology (e.g., first and third 

weeks of September) and poor NCEP forecasts.  The metric is quite effective during 

outlier years, such as 2003, because the metric truly rewards the forecast for identifying 

an outlying period.  The metric is less valuable during average years as the denominator 

in Equation 3 approaches zero.  This skill metric would be more effective if comparing 

different types of forecast models.  A more common test of skill is the root mean squared 

error (RMSE), shown below in Figure 21.   
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Comparison of Forecast RMSE
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Figure 21.  A comparison of the root mean squared errors of the April, June, and 
August forecasts.   

 
Similar to the skill metric, the RMSE function tracks error in the forecasts over time.  As 

in the Hamlet skill metric, error is greatest during the summer period, and clearly 

decreases as the fall season approaches. 

 

 

Forecasts are not perfect, despite the expectations of resource researchers and managers.  

Opportunities for error in the modeling process are many.  These include error in the 

original datasets, the process of aggregating data, the creation of the calibration models, 

the forecasted climatology data, and the error associated with the process of creating the 

forecasts.  While some of this error may be attributed to data entry and calculations, some 

is also the result of computational mistakes in data collection by external agencies (e.g., 

water or met station records) or the inaccuracy of downscaled global climate models.  

Though it is difficult to assess the errors in demand forecasting, the skill and RMSE 

metrics help quantify the error in the forecasts.  Though error is inevitable in forecast 

modeling, the cost of water management without benefit of any short-range water 

demand forecast may be even more damaging.  Sewell has been correct in the past 

regarding water managers’ inability to anticipate change.  Such inability should not 
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continue given the accessibility of water resource data, statistical techniques, and 

advancements in climate change research.   

 

Using the Short-term Model Forecasts 

Forecasted water demand is helpful for several reasons.  The development of coefficients 

allows us to make forecasts regularly that are useful for additional water resource 

planning models for the Puget Sound region.  The CRYSTAL (Cascade Regional Yield 

Simulation and Analysis) model, also developed as a PRISM (Puget Sound Regional 

Synthesis Model) project, attempts to simulate both the supply and demand of water in 

the Puget Sound region.  The model focuses on water supply and instream flows for 

Seattle, Tacoma, and Everett.  The primary objective of the model is to demonstrate the 

“value and opportunities of a regional approach to water management” (TAG, 2002).  In 

order to accomplish this objective, the model must also acknowledge urban water 

demands by regional users.  In order to make forecasts of future water supply and 

instream flow needs, the model requires demands for the forecasted period.  Therefore, 

the demand forecasts developed for Seattle, Tacoma, and Everett are supplied to the 

CRYSTAL model to help develop more comprehensive regional water resource plans.   

 

The demands for Seattle are supplied to a new optimization model of the Seattle system.  

This model attempts to set instream flows and user demand as the primary objectives 

given the forecasted streamflow for the next six months.  Using the demands forecasted 

in this project and separately forecasted streamflows for the region, the optimization 

model determines if or when the region will have sufficient water supply to support 

demands.  Finally, the short-term demand forecasts require regular attention and variable 

updates.  While this requires additional work on behalf of the researcher or modeler, it 

assures the model will be updated and validated regularly, a practice less common to 

long-term forecast models.    
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Though the short-term water demand forecasting model only supports six-month 

forecasts, these are critical indicators of what resource managers may see in the coming 

season.  This is chiefly relevant to climate variability or unexpected changes in regional 

supply or demand.  Jain and Ormsbee (2002) agree that short-term demand models are 

critical components of optimization strategies, drought management, conservation 

improvements, and so on.  In succeeding chapters, additional water demand forecast 

models with longer planning capacities will address long-term regional infrastructure 

needs, land use changes, and climate change impacts.   
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Chapter 4.  Long-term Water Demands 

 

The future ain’t what it used to be.  
-Yogi Berra 

 

Water resource engineers commonly use the past as a guide to the future, planning as if 

events that have not occurred are unlikely to occur.  However, the future’s uncertainty 

has required planners to predict water demand two or three decades into the future.  Past, 

long-term forecasts have allowed resource managers to be generous in their estimates of 

water demand.  Long-term water demand modeling is a difficult task; it requires robust 

data sets and consideration of uncertain climate, economic, and cultural conditions.  

Therefore, water resource managers felt the professional responsibility to generate 

demands that were unlikely to be exceeded.  For example, during the post-World War II 

years, resource mangers and planners typically chose the largest feasible project.  While 

population and the economy grew, such decisions were justifiable (DeKay, 1985).  Now, 

however, we find population growth more stable, water use decreasing, and significant 

environmental considerations.  These changes have caused many water resource 

managers to rethink long-term demand planning.   

 

Long-term models are helpful for supply planning, reservoir or urban infrastructure 

changes (i.e., water mains, transfer pipes, etc.), extended conservation programming or 

plumbing code changes, and regional urban planning and development.  Unlike short-

term models, long-term water demand models do not contribute to near-term or seasonal 

operations’ policies regarding drought, instream flows, or climate variability.  Instead, 

long-term models provide extended foresight for resource mangers to address overall 

system capacity and management (Bauman et al., 1998).  Using various methods and 

databases from urban planning, regional surveys, and local utilities, efforts to renew a 

long term model for the Seattle region are both intriguing and challenging.  In the 

following chapter the purpose, design, and challenges of long-term water demand models 

are discussed.  This discussion reveals long-term models as critical components to 
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regional water resource stability.  In addition this chapter addresses the process of 

creating a framework for various types of long-term models as well as the difficulties in 

modeling complex databases.  The research presented in this chapter will be used to 

develop an improved long-term water demand model for the Seattle region.  This model 

will include a more disaggregated database based on spatial or land-use related variables.  

In addition, this research will help build a water resources component into a highly 

disaggregated urban transportation and planning simulation model, UrbanSim. 

 

Possible Long-term Forecast Methodologies and Principal Components 

Chapter 2 addressed several methods for forecasting demands, such as per capita, 

econometric, extrapolation or other integrated models (AWWA, 1996; 2001).  Though 

these methods were not specifically linked to long-term forecasts in Chapter 2, most of 

these methods are, in fact, used with decadal models.  The method chosen depends on the 

quantity and quality of data available, the capability of the forecasters (AWWA, 1996), 

and forecast goals.  A brief summary of several methods addressed by the American 

Water Works Association (1996; 2001) are included here.   

 

The per capita method is the most common for developing water demand forecasts.  Most 

utilities’ models use the per capita methodology as their foundation for developing their 

own forecast models.  Per capita models are developed using utility and survey data of 

water use per person or household.  Other variable information depends on survey detail 

and the number of respondents.  Using current and historical demands, per capita 

consumption is estimated and multiplied by forecasted population to determine future 

water demand totals.  Depending on the desired detail, the utility may include a number 

of urban sectors (i.e., residential, commercial, industrial) or land-use types. 

 

For decades utilities relied on the simple method of extrapolation.  Like the per capita 

model, data requirements are limited to current and historical demand data, population, 

and population forecasts.  The data are plotted in a scatter plot as annual or monthly 
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consumption; a trend line is drawn to determine the slope of the line and potential 

correlation between the variables of population and demand.  The line is projected or 

extrapolated to develop longer-term relationship using the given slope.  Essentially, the 

rate of increase in demand in the past is simply applied to the future.   

 

Econometric models attempt to determine the variables most responsible for water 

demand.  Econometric models are dependent on economic variables related to water 

demand and are often calculated using a multivariable regression (as in the short-term 

model, Chapter 3).  Econometric variables include employment, water price, and 

household income.   Similar to the subject specific data required by the econometric 

model, land use models focus on elements related to land use and water demands.  This 

may include land use type (residential vs. commercial), policies related to urban 

development, or characteristics of a particular type of land use.  Often variables from 

econometric and land use models are incorporated into an integrated model, a data 

intensive and diverse method.   

 

Multivariate, integrated models include information from all sectors:  social, economic, 

environmental, and spatial.  The short-term model, presented previously, demonstrates 

the importance of several independent variables:  winter water demand, temperature, 

precipitation, water price, and other system-wide variables.  A long-term model often 

uses additional household characteristics such as income, size (number of people), house 

age, housing density (number per acre), etc. (PMCL, 2003).  These variables are more 

likely to change on an annual or decadal basis, whereas the short-term model accounts for 

data variation within a shorter time-frame.  Most long-term water demand models refer to 

a handful of standard model variables from the most influential categories:  population, 

economy, technology, climate, water price, conservation, housing characteristics, and 

land-use (AWWA, 1996).  In designing a long-term model for the Seattle region, many of 

these variables were included.  Defining the long-term forecast variables, determining the 
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level of disaggregation, and identifying data sources are the first and most critical 

elements of long-term model design.     

 

Defining the Long-term Model:  Data Sources, Aggregation, and Challenges 

Water demand research suggests that a model is only as valuable as the data available.  

Unlike many short-term models, long-term models include diverse data with different 

time-steps and levels of detail.  Data used in long-term models are collected by public 

utilities, regional research councils, land-use and planning studies, tax records, and 

climate databases.  The level of detail and diversity of data may vary (Weber, 1993; 

AWWA, 2001); this presents a challenge for identifying the utility of data.   

 

In addition to the historical data needed to create a long-term demand forecast model, the 

projection of water demand ten to thirty years into the future also requires knowledge 

about changes in the model’s independent variables.  Social and economic projections for 

some variables may be available through regional demographic research councils; 

however, this detail has a limited accuracy given the uncertainty of the forecasts.  

Projected climate variables used in a long-term, decadal model can be accessed through 

climate change research, similar to NCDC (National Climatic Data Centers) data used in 

the short-term demand model.  Like forecasted social and economic data, climate 

forecasts are equally uncertain.  The uncertainty in independent variables of long-term 

demand models is inevitable.  However, long-term models can be successfully generated 

if the data are retrieved from reliable sources and error is both acknowledged and 

quantified.    

 

IWR-MAIN’s first recommendation for preparing a long-term forecast is to determine the 

“optimal disaggregation of the residential section…”.  Determining the level of data 

disaggregation in the forecast is a primary yet challenging first step in model design.  

While it is common to aggregate water demand data for the sake of simplicity, research 

also supports disaggregated methods for their ability to improve the quality and 
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accountability of the forecast (Bauman et al., 1998).  Truly disaggregated models can 

predict water demand by customer type, location, season, or other variables.  A 

disaggregated model based on per capita, economic, as well as spatial variables can 

provide utilities with the ability to micromanage water use, identify specific problem 

areas, and mitigate urban development based on resource supply within urban areas.   

 

In the late 1970s, the Seattle Water Department (SWD) used data from several classes 

(i.e., residential, commercial, industrial) in each of 120 geographic subareas within their 

service area to develop a multivariate regression model.  Because the model included 

region specific detail, each subarea’s forecast “reflected the specific characteristics of that 

subarea in terms of prices, incomes, water pressure, and the number of users in each 

sector”  (DeKay, 1985).  As a result, SWD was able to develop a system hydraulic model 

to help plan for improvements and identify points of vulnerability.  Though the benefits 

of a disaggregated model are many, arguments against highly disaggregated models are 

also prevalent.   

 

In reference to the highly disaggregated IWR-MAIN study by Boland and Dziegieleski 

(1989), Wilson and Luke (1990) refer to the results as “flawed” and “easily misused.”  A 

common concern regarding disaggregated models is that they are difficult to use due to 

the complexities in the databases.  Though Wilson and Luke are primarily critical of 

specific results in Boland and Dziegieleski’s study, they are also discouraged by the 

model’s limited documentation and explanation of many model details, from coefficients 

to sector specific output.  Though these arguments are valid, the opportunity to analyze 

the major and minor components of water demand is rare.  Disaggregated models allow 

resource managers to examine specific controls on water demand, make detailed 

decisions about sector changes, and consider the individual pieces of a complicated 

system of resource demand.  If created properly, disaggregated water demand models 

provide a unique perspective on urban water demand.   Several approaches in this thesis, 
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both disaggregated and aggregated, are used to evaluate a long-term model for the Seattle 

region.   

 

Seattle Public Utilities Long-term Demand Model 

Seattle Public Utilities (SPU), like most water utilities throughout the country, uses 

demand forecasting to provide essential information in balancing future supply and 

demand.  Seattle’s first quantitative estimates began in the 1940s.  Simplistic per capita 

models grew into slightly more complicated multivariate models which were modified in 

the late 1980s and early 1990s to create an econometric model. 

 

SPU’s integrated-econometric water demand forecast model is organized by 

sectors/classes within retail and wholesale sectors.  SPU’s model uses the aforementioned 

multivariable regression approach with three to seven independent variables, depending 

on the forecasted class, as well as a conservation variable that dictates the most recent 

system-wide savings method.  The independent variables include household type/size 

(single vs. multifamily), employment by sector, real household income, summer water 

price, winter water price, sewer price, precipitation, and temperature.  The econometric 

model includes rate-induced conservation.  Other forms of conservation (i.e., 

programmatic, plumbing code, etc.) are estimated separately and then subtracted from the 

total retail demand calculated by the model.  To identify distinct differences in water use 

among their jurisdictions, SPU initially emphasized geographic disaggregation as a 

priority for the model.  One model identifies 77 separate forecasts in the entire SPU 

demand forecasting model.  These forecasts account for each customer class (single-

family, duplex, multifamily, small commercial, large commercial, industrial, irrigation, 

government/education) in 28 different areas, inside and outside Seattle’s city limits in 

addition to the demand of 26 purveyors.  The independent variables, customer classes, 

and overall SPU modeling approach are detailed in the table and figure below. 
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Table 5.  SPU explanatory variables and customer classes used in long-term 
demand forecast models (SPU). 
 Customer Class 
Explanatory Variables Single 

family/dupl
Multi-
family

Small 
Comcl. 

Large 
Comcl. 

Indust. Irrig. Govt/ 
Educatn

Number of Households* X X      
Number of Employees*   X X X X X 
Summer Water Price** X X X X X X X 
Winter Water Price** X X X X X  X 
Sewer Price** X X X X   X 
Real Income** X X      
Precipitation*** X     X  
Temperature*** X X X X  X X 
Price Elasticities# -0.16 / - -0.10 -0.18 -0.19 -0.14 -0.54 -.10 
*     The model actually calculates consumption per meter and then multiplies by the number of 
meters.  The number of meters is a function of the number of households or employees in that 
class. 
**   Equations contain lagged values of these variables. 
*** Weather variables are used in estimating the model but not in forecasting. 
#      Price elasticities are weighted averages of long run summer and winter elasticities 
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  Figure 22.  SPU depiction of long-term forecasting process. 

 

Currently, SPU uses a specialized econometric approach to demand forecasting.  This 

econometric model allows modification of the type, number, and parameters of 
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determinants and assessment of which determinants are most significant.  As in the short-

term model described in Chapter 3, Seattle also uses a multivariate technique which 

employs a linear relationship between multiple variables (SPU).  The most recent 

documentation of the Seattle model from an April 2001 “Long Range Water Demand 

Forecast and Yield Estimates” identifies the sources of data and provides assumptions 

used in the long-term forecast.  SPU receives demographic growth information from 

PSRC’s (Puget Sound Regional Council) forecast of households and employment, 

household incomes are prepared by Seattle City Light and include long range economic 

and demographic forecasts, and water and sewer rates are extracted from a 1996 SPU rate 

study.  The forecast also includes current and projected SPU conservation programs.  The 

“10% in 10 years” program (2000-2010) is used in a per capita forecast for all Seattle 

customers; after 2010, wholesale customers will implement new conservation techniques 

and retail customers are expected to participate in an additional conservation package in 

2020.  Using an econometric-per capita combined model, SPU’s April 2001 forecast 

estimates demands for Seattle retail customers, current purveyors, and new purveyors 

from 1990-2020.   
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 Figure 23.  April 2001 SPU long-term water demand forecast. 
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The 2001 Central Puget Sound Regional Water Supply Outlook also provides similar 

water demand forecasts for the region.  Though the Outlook initially recruited individual 

forecasts from over 150 regional utilities, the variability in the utilities’ forecasts resulted 

in limited reliability of the combined model.  The Outlook acknowledges the model’s 

poor accountability for details regarding changes and/or development in smaller regions.  

Obviously a large scale regional demand forecasting model cannot explain changes on 

any small scale. 

 

In general, forecasting models like those of the Outlook and SPU are designed to provide 

long-term forecasts through simple econometric or per capita methods, using aggregated 

data through time-series or cross-sectional conditions8.   While highly aggregated 

modeling systems may be easier to work with due to the limited number of variables, 

they are inconsistent and less detailed in their analysis; this leaves significant room for 

improvement.   

 

Revising the Seattle Long-term Model:  Goals and Expectations 

The SPU water demand model forecasts deliver confident forecasts despite 

documentation that reveals limited detail about the forecast methodology.  One of the 

proposed goals of the SPU model was to geographically disaggregate water use data.  

Though the model divides the forecast into specific sectors based on customer class, the 

level of disaggregation is difficult to detect based on simplified results and restricted 

documentation of forecast results and methodology.  Given the limited number of 

effectively disaggregated water demand models in the Seattle region and the potential of 

this type of model, the goal of this thesis is to build a framework for a highly 

disaggregated long-term water demand model.  Using databases and resources from the 

City of Seattle, SPU, PSRC, and the University of Washington’s Urban Simulation 

                                                 

 

8 Time series data provide water data variables as part of historical records over a period of days, weeks, 
months, etc.  Cross-sectional data uses one time step to describe specific conditions of water use.   
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research group, the model framework is a first step in gathering and organizing 

appropriate data in an urban planning model.   

Researchers at the University of Washington have created “a software-based simulation 

model for integrated planning and analysis of urban development, incorporating the 

interactions between land use, transportation, and public policy” (UrbanSim, 2003).  The 

model is intended for Urban Planning Commissions as well as other urban groups 

interested in the interface between travel models and new land use forecasting and 

analysis (UrbanSim, 2003).  UrbanSim is a complex model that incorporates land-use and 

governmental policies with personal choices such as employment, household location, 

and method of transportation.  UrbanSim is a detailed and dynamic model; however, in 

spite of the dynamic processes, UrbanSim neglects climate and natural resources.  The 

model does not include regional temperature or precipitation.  Similarly, UrbanSim does 

not identify changes in many natural resources, including water.  A primary goal of the 

long-term Seattle water demand model was to work with UrbanSim to incorporate water 

resources into the model.  Though a simple, aggregated water resource model may suffice 

for UrbanSim, a more effective model should utilize the abundant data and model 

disaggregation available in the UrbanSim framework.  Methods for accomplishing this 

will be discussed.    

The long-term Seattle water demand research process includes database collection, 

organization, and analysis; experimentation with model methodology; and collaboration 

with urban planning and research efforts.  Through these processes, it became clear that 

while the need for a disaggregated water demand model for the Seattle region was well-

established, research progress was not being made.  Prior to this research study it is not 

clear that an effort to bring together many databases and resources to create the 

framework for a disaggregated Seattle water demand model had been attempted.  While 

the original goal of the research was to create a tangible framework for developing and 

implementing a water demand model that included detailed economic, social, and 

environmental characteristics, the actual research process of this thesis identified the 
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more practical terms of this goal.  Practically, the long-term model research identified 

databases and techniques that may be employed in the design of a disaggregated long-

term demand model for the Seattle region.  This research was completed through 

experimentation with various water demand, social survey, and land-use databases.  This 

experimentation helped determine the potential value of disaggregated water demand 

forecasts.  While the results of these efforts are mixed, this research initiated the difficult 

tasks of database recruitment, joint resource planning, and initial disaggregated 

regression analysis.   

 

Revised Seattle Long-term Model:  Data Sources 

The data sources critical to the development of a comprehensive demand model include 

information from the economic, social, environmental, and water utility sectors.  Because 

the development of the model is dependent on the availability of water demand data, this 

research effort started with SPU.  SPU provided two large water demand databases.  One 

water demand database is organized by billing period for each SPU customer across all 

user sectors; the other is seasonal water data for each customer account.  The seasons 

include averages for summer, May 16-September 15; spring/fall,   September 16-

November 15 and March 16-May 15; and winter December 16-March 15.  The detailed 

billing data included residential classes of single and multifamily residences; industrial 

and commercial classes; fire service; and irrigation services.  The classes were separated 

and single family residential customers became the primary sector for research.  Climate 

data (temperature and precipitation) used during long-term model research was extracted 

from the SeaTac weather station.  The same data are used in the short-term model 

(Chapter 3).  Various social, economic, and land-use databases were gathered directly 

from PSRC and UrbanSim’s regional databases from PSRC and tax related databases.   

 

Similar to the water databases, the Parcel Index Number (PIN) tax based databases also 

presented detailed land-use information.  This database included nearly 200,000 

household accounts containing information about lot size, house size, house age, and 
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other parcel related characteristics.  Additional household information was recovered 

from PSRC general and household surveys.  Though PSRC household surveys provide 

very specific details, they are far more limited in both number of households and years 

surveyed.  The general PSRC databases are primarily linked to census data.  These data 

cover many years and a large geographical area and can be difficult to use in a model 

requiring specific household information.  Though data mining is time intensive and 

often difficult, these data searches are critical to recovery of important model resources.   

 

Each database contributed to some aspect of the modeling exercise.  These methods 

included highly disaggregated database organization as well as annual citywide census 

information.  Though several different databases were utilized in many model attempts, 

only three methods are detailed in this thesis.  Method I utilizes a geographic distribution 

of water demand to identify regional trends in demand, Method II incorporates a PSRC 

household survey with specific household water demand, and Method III integrates 

parcel-based information with household water demand.  These methods helped to 

evaluate the value of various databases, determine the potential significance of 

disaggregated water demand models, and assess the future of research in this area of 

water resource management.   

 

Revised Seattle Long-term Model:  Select Methodology 

 METHOD I:  SPATIAL DISAGGREGATION OF SEASONAL WATER DEMAND 

Method I:  Purpose 

Because of data limitations and concerns about data base reliability, only residential users 

were selected to be modeled.  These data were disaggregated spatially by imposing 

geographic divisions among SPU customers.  The purpose of this method is to examine 

water use based on the customer’s distance from an urban center in Seattle.  This method 

makes several assumptions about SPU customers’ water use; for example, dividing the 

city geographically assumes that users at the same distance from the center of the city use 

water equally because they have similar households, yard areas, housing density, or 
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lifestyle.  Dividing the database geographically provided simplification of the SPU 

customer database, and allowed investigation of possible geographic trends in water use.  

Displayed in Figure 24, the sectors are divided into rings, each with a different radius, or 

distance from the city center.  The city center is defined as two locations in downtown 

Seattle, including SPU’s downtown headquarters.   

 

This method of analysis could be useful to long-term management of the SPU system.  

The simplification of household water use by geographic region may help the utility 

identify regional changes in seasonal water use or conservation when considering 

infrastructure, water distribution, or urban planning changes.  In addition, geographic 

trends in water demand could help utilities identify target areas for conservation 

campaigns.  Method I also provided the first stage in identifying useful explanatory 

variables and determining to what extent urban location affects water demand.    

 

     
Figure 24.  Spatial disaggregation of SPU residential customers in Puget Sound 
area.  Distances in figure legend are in miles (e.g., 0.00-2.50 miles from city 
center). 
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Method I:  Data 

The variables included in the spatial analysis of Method I are seasonal household water 

use, average household income, average number of people per household, seasonal water 

price, average parcel area, seasonal average of monthly temperature maximum, and 

average seasonal precipitation.  The dependent variable data, seasonal household water 

use, were acquired from SPU.  Water prices (rates) were acquired from the utility.  

Household information, such as average size and annual income, was gathered from 

annual PSRC assessments while parcels were plotted and their area calculated using a 

parcel database from the Washington State Geospatial Data Archive (WAGDA).  Climate 

data (temperature and precipitation) were obtained from NCDC’s SeaTac weather station.  

All data were constrained to the SPU seasonal wateruse database time period of 1991-

2002.     

 

Data were aggregated into annual seasonal (summer, winter, spring-fall) averages.  The 

households were sorted by parcel index number (PIN), plotted on an ArcGIS map, 

separated based on their distance from the center of Seattle (2.5 mile rings), and then 

sorted by year.  The household water use data were then averaged for each year (1991-

2002).  In the five spatial rings or sectors the number of households varies for each 

sector.   

 

Table 6.  Geographic distribution of SPU residential customers in Figure 24 
from seasonal water use database. 
Distance from 
city center 

Approx. number 
of SPU customers 

0-2.5 miles 15,000
2.5-5 51,000
5-7.5 60,000
7.5-10 17,000
10-12.5 7,000
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Method I:  Methodology, Results, & Discussion 

Using annual averages for each season in each of five spatial sectors, a linear regression 

was performed for each season, using 12 years of data of the aforementioned independent 

variable data.  The format of the linear regression model, the regression variables, and an 

example of the data used for the summer season are noted below. 

 

Equation 4. 

Average seasonal household water demand = β* + x1·A + x2·B + x3·C + x4·D + 
x5·E + x6·F + x7·G + x8·H 
*The value of the intercept is derived in the regression analysis. 

 

Table 7.  Geographic distribution regression method variables.     
Dependent variable Average annual household water demand/season 
Independent variables A. Temperature (average seasonal max) (Tmax) 

B. Average temperature (average seasonal) 
C. Precipitation (seasonal average) 
D. Precipitation (seasonal cumulative) 
E. Water rate/price** 
F. Average household income 
G. Average number of people/household 

 

H. Average parcel area 
**Water rates varied seasonally; the spring-fall season was taken as an average of 
the two off-peak rates.   
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Table 8.  Example of data used in the 0-2.5 mile region during the summer 
season. 

year Tmax, F 
Ave. 

temp, F 

Ave 
precip., 

in 

Ave. 
cumulative 
precip., in Rate LN(income) 

Hshld 
size 

Parcel 
area 

1991 73.97 64.10 1.25 2.45 $0.93 10.83 2.40 7031.64 

1992 76.63 66.17 0.90 2.70 $1.16 10.92 2.38 7025.89 
1993 70.73 62.43 1.30 1.46 $1.12 10.78 2.42 7020.00 
1994 75.03 65.27 0.61 2.27 $1.34 10.90 2.42 7007.52 
1995 73.53 64.23 1.54 4.06 $1.33 11.01 2.42 6982.16 
1996 75.17 64.97 0.89 3.94 $1.41 11.06 2.39 6954.83 
1997 72.93 63.90 1.37 5.88 $1.44 10.96 2.39 6922.73 
1998 74.23 64.77 0.62 1.48 $1.50 10.92 2.40 6902.55 
1999 70.27 61.80 1.32 2.27 $1.60 10.88 2.37 6888.98 
2000 71.90 62.80 0.72 1.68 $1.88 10.88 2.37 6888.41 
2001 70.27 61.63 2.13 4.18 $2.16 10.88 2.37 6716.13 
2002 73.37 63.77 0.80 1.10 $2.56 10.88 2.37 6694.27 

 

Regressions were devised for each season in each geographic region (Figure 24).  Though 

the regressions could include any of the independent variables specified in Table 7, most 

seasons and regions included four or five of the eight variables.  Regression analysis 

revealed several variables as less significant and/or demonstrated collinearity with other 

variables.  Though not all regional regressions performed well, several regressions 

produced R2 values over 80%.  A few examples of these calibrations are shown in 

Figures 25 and 26.   
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Average seasonal Water Demand:  0-2.5 mile region
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Figure 25.  Calibration model for the average seasonal water demand for Seattle 
region  0-2.5 miles.  R2 values for each season are noted in parentheses. 
 
 

Average seasonal water demand:  5-7.5 mile region
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Figure 26.  Calibration model for the average seasonal water demand for Seattle 
region  5-7.5 miles.  R2 values for each season are noted in parentheses. 
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These calibrations indicate the model performs well in certain regions and can help 

provide guidance regarding the need for and location of new supplies.  It is likely, 

however, that the model performs well because of the highly aggregated data.  Though 

this model allows the organization and display of a large and disaggregated database, 

regressions over only 12 years of annual averages are likely to produce high correlations 

but not necessarily powerful relationships.  The adjusted R2 (typically .66-.76)9 and p-

values (several above .50) indicate model limitations.  Though seasonal averages of water 

use and other data are indeed representative of thousands of households, the annual 

averages of independent variable data (Table 7) eliminates the variability associated with 

these households.  The results of Method I indicate that it is easier to detect a trend in 

averages than in the original and highly disaggregated data.   

 

In an attempt to better utilize the disaggregated, household database, analysis was also 

done using individual household water use data but annual averages for each household’s 

explanatory variables.  Therefore the database included thousands of individual 

households with differing water demands, but similar explanatory variables.  This 

regression analysis performed poorly during calibration (low R2 and adjusted R2 values 

and high p-values).  These results are a product of the model’s inability to find 

correlations between independent households’ water use despite their similar size, 

income, etc.  The highly disaggregated model demonstrates the high variance between 

individual household water use.  Though less statistically robust due to lower significance 

values and potential collinearity between independent variables, the original aggregated 

model calibration captures regional annual seasonal averages more effectively.   

 

With the exception of higher water use in the 10-12.5 mile region and the increased 

parcel area in the 5-7.5 mile region, the regions in Figure 24 are surprisingly similar.  

                                                 

 

9 The adjusted R2 value accounts for the degrees of freedom in the model and is adjusted based on the 
number of potentially unnecessary determinant (independent) variables in the regression (Based on its 
mathematical origin, R2 values will always increase as the number of determinants increases, despite what 
is actually statistically valuable to the correlation.) (Devore, 1987). 
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Differences between water use or parcel size may be the result of a few outlying points or 

increased lawn size and watering; therefore no specific conclusions can be drawn from 

these minor differences.   Unfortunately due to disaggregated data averages, Method I 

does not illustrate dramatic trends or the potential for evaluating future trends in Seattle’s 

regional water use.  While the original purpose of the long-term model analysis was to 

consider possible methods for evaluating and forecasting highly disaggregated water use, 

this method, though spatially disaggregated, does not ultimately meet this standard as 

Method I does not successfully utilize disaggregated data throughout the analysis.  

Method I does however identify potentially useful databases and strategies for future 

research in spatially disaggregated water demand data. 

 

 METHOD II:  PSRC WAVE-SURVEY AND MATCHING SEASONAL WATER DEMAND  

Method II:  Purpose 

Method II continues to explore modeling spatially disaggregated water demand.  The 

value of specific household data in development of a regression-based demand model 

ranges from potential long-term system management to specific investigations of system 

failures in certain regions.  Though Method I illustrated a potentially useful approach to 

data disaggregation, the poor performance of the model using water use averages and 

regional generalizations for independent household data did not support the value of the 

approach.  Like Method I, Method II uses SPU’s seasonal water use database but 

incorporates household-specific information based on a ten-year PSRC survey.  The 

Wave survey may help determine long-term trends in households’ income or size that 

could be used in a long-term forecast model.   

 

Method II:  Data 

The water demand data (SPU seasonal, residential only), parcel area, water rates, and 

climate data are the same data used in Method I.  The household data (income and 

number of people per household) was gathered from the PSRC “Wave survey” from 

1989-1999 (except 1995 and 1998).  The Wave survey documents PSRC’s survey of 
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household characteristics (i.e. size, income, number of cars, etc.) from hundreds of 

residents in the Puget Sound region over a 10-year period.  The survey was acquired with 

PSRC permission from the Univeristy of Washington’s UrbanSim research group.   

 

Method II uses household specific information about wateruse and household 

characteristics.  To integrate the Wave survey and SPU seasonal water use databases, the 

accounts were matched based on address; this significantly limited the number of 

households available for evaluation.  Though hundreds of households were surveyed 

throughout the Puget Sound, only a select number within the SPU service region and/or 

were surveyed consistently throughout the PSRC survey period.  A total 385 accounts 

were included in the joint wave survey and SPU databases. 

 

Method II:  Methodology, Results, & Discussion 

A linear regression was performed using the PSRC Wave survey and SPU water demand 

accounts were used in linear regression analysis.  Variables for Method II are specified in 

Table 9.  Analogous to the short-term demand model, this method also uses winter water 

demand as an independent variable for the summer-fall seasons.  Unlike the annual 

system-wide average winter demand in the short-term model (Chapter 3), winter water 

demand in Method II is taken as the actual household winter water demand for each year.    

 

Equation 5. 

Average seasonal household water demand = β* + x1·A + x2·B + x3·C + x4·D + 
x5·E + x6·F + x7·G 
*The value of the intercept is derived in the regression analysis. 
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Table 9.  PSRC wave survey regression method variables.     

Dependent variable Household water demand/season 
Independent variables A. Temperature (average seasonal max) (Tmax) 

B. Precipitation (seasonal average) 
C. Water rate/price** 
D. Actual annual household income 
E. Actual number of people/household 
F. Average parcel area 

 

G. Actual winter water use+ 
**Water rates varied seasonally; the spring-fall season was taken as an average of 
the two off-peak rates.   
+Winter water use was used as an independent variable in the summer, spring-fall, 
and summer and spring-fall regressions.  It was withheld from the regressions for 
all seasons and the winter season alone.   

 

A sample of the model database used in Method II is illustrated in Table 10. 

 

Table 10.  Sample section of the database used in Method II.   

Address Year 
Water 

use, ccf Tmax, F 

Ave 
precip., 

in Rate 
Std. 

Income 
Hshld. 

size 
Parcel 
area 

Winter 
water 
use 

  summer               
1992 0.18 76.63 0.90 2.23 3 2 7025.9 0.17 
1992 0.20 76.63 0.90 2.23 4 5 7025.9 0.19 
1992 0.12 76.63 0.90 2.23 8 3 7025.9 0.12 

…  
spring-
fall               

1992 0.16 62.12 2.52 0.96 3 2 7025.9 0.17 
1992 0.19 62.12 2.52 0.96 4 5 7025.9 0.19 
1992 0.13 62.12 2.52 0.96 8 3 7025.9 0.12 
 … winter               
1992 0.17 49.07 5.00 0.93 3 2 7025.9 N/A 
1992 0.19 49.07 5.00 0.93 4 5 7025.9 N/A 

C
O

N
FI

D
EN

TI
A

L 

1992 0.12 49.07 5.00 0.93 8 3 7025.9 N/A 

 

 

Characterized only by season, the calibration of the summer, spring-fall, and winter 

season regression models in Method II yields mixed results.  These are summarized in 

Table 11.  The R2 values were low for most seasons; the summer and spring-fall 

combined season as well as the spring-fall season have stronger R2 values as they benefit 

most from the explanatory variable of winter water demand.  The winter regression 
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performed most poorly due to the lack of strong explanatory variables.  The significance 

(p-values) of the independent variables did not support strong correlations between the 

actual and predicted household water demand.  In addition, the coefficients derived 

during the regression analysis do not indicate a strong relationship between the 

explanatory and independent variables.  Many of the coefficients had very small and/or 

illogical values.   

 

Table 11.  Summary statistics for Method II regression analysis. 

Season R2 RMSE 
ALL 0.148 0.163
Summer 0.368 0.155
Spring-Fall 0.764 0.080
Winter 0.196 0.138
Summer and 
Spring-Fall 0.528 0.126

 

Though the statistical analysis of Method II is not encouraging, Method II provides an 

opportunity to analyze water demand by household.  Despite the potentially helpful 

PSRC Wave survey, prediction of such disaggregated water demand clearly needs a more 

substantial and consistent database.  This method, like Method I, provides knowledge 

about the effectiveness of data disaggregation and the needs for future forecast methods.  

According to these methods, household-specific data are important to the pursuit of truly 

disaggregated models.  In addition, these data must include several years and be 

consistent in representing information throughout that time.    

 

 METHOD III:  PIN DATABASE MATCHED TO MONTHLY WATER DEMAND 

Method III Purpose: 

Method III utilizes the SPU monthly billing database for residential household water use 

and the parcel index number (PIN) database from the UrbanSim research group.  Using 

monthly water use information and parcel-based characteristics (i.e., lot size, built 

square-feet, number of residences per parcel, land value, house age, etc.) as well as 
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climate data, Method III examines the relationship between water use and parcel 

characteristics related to urban development.  The monthly database and PIN database 

provide an opportunity to examine household water use and the affects of parcel and 

household features.  Trends in water use based on lot size and house-age may provide 

insight into the effectiveness of plumbing code versus volunteer conservation, or how 

future zoning regulations (regarding lot size) might affect water use.   

 

Method III Data: 

The PIN database includes public information collected through tax records; this includes 

the parcel’s census block, city, county, land use type, number of residential units, lot area, 

built square feet, value of parcel improvements, land value, and year the parcel structure 

was built.  The SPU database records bi-monthly water bills for every SPU customer 

from 1992-2003 (received from Tiva Brown).  In addition to the water use and parcel 

information, Method III also incorporates climate data, including average monthly 

temperature maximum and cumulative monthly precipitation from NCDC’s SeaTac 

weather station.     

 

Due to the size (1+ gigabytes) of these databases, steps were taken to simplify them.  

Residential water use was sorted from the overall SPU water use database and the PIN 

and SPU databases were matched based on date and PIN id numbers.  The two databases 

were combined with the associated climate data and parcels with one residential unit 

were selected.  Though the database still included millions of accounts over the 12 year 

period (1992-2003), it contained only single family residences.   

  

Seven independent variables were selected for model construction:  lot area, built square 

feet, value of parcel improvements, land value, year the parcel structure was built, 

maximum monthly temperature, and cumulative precipitation.  To remove outlying 

values that skewed initial model regressiosns, all water use values equal to zero were 

removed.  In addition, values for each account in the aforementioned variables, as well as 
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monthly water demand, were standardized10.  The standardized variables were limited to 

a range of three standard deviations and outliers were removed.  Remaining outliers are 

evidence of inevitable error often associated with extremely large database calculations.  

Most outlying values are the result of unusually high or low water use in a short time 

period for one account, mismatched database entries, or error in the calculation or input 

of the original water use data.  With the remaining outliers in mind, the joint database 

was separated based on season:  November-February (winter), March-May (spring), 

June-August (summer), and September-October (fall).   

 

Method III:  Methodology, Results, & Discussion 

The evaluation of Method III includes experimentation with database consistency, linear 

versus log-linear regressions, and the determination of the most influential parcel 

characteristics. 

 

To ensure the stability of each database, several linear regressions were performed for 

each season.  Once the summary statistics (i.e., R2 and adjusted R2 values) of the linear 

regressions were consistent between sample sizes, the natural log of each variable (Table 

12) was calculated for use in a final log linear model (Equation 6). 

 

Equation 6. 

Monthly water demand/household =  7654321 xxxxxxx GFEDCBA* ⋅⋅⋅⋅⋅⋅⋅β

Take the natural log of both sides: 

Ln(Monthly water demand/household) = β* + x1·Ln(A) + x2·Ln(B) + x3·Ln(C) + 
x4·Ln(D) + x5·Ln(E) + x6·Ln(F) + x7·Ln(G) 
*The value of the intercept is derived in the regression analysis 

 
 
 
 

                                                 

 

10 Standardized value σµχ /)( −=  where χ  is the original value, µ  is the mean of the original values, 
and σ  is the standard deviation.   
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Table 12.  PIN and SPU monthly billing regression method.     
Dependent variable Monthly water demand/household 
Independent variables A. Lot area 

B. Value of parcel improvements 
C. Land value 
D. Year parcel structure was built 
E. Tmax (average monthly max) 
F. Cumulative precipitation (monthly) 

 

G. Built square feet   
 

Using the significance tests, R2 values, and collinearity diagnostics, four to five variables 

were selected for each seasonal regression model (Table 13).   

 
Table 13.  Summary statistics of seasonal log-linear models using PIN and SPU 
monthly billing databases. 

Season R R2 Adj. R2 
Ind. 

Variables 
Coefficient 

value 
Winter 0.261 0.068 0.068 Built sq. ft. 0.286 
 (4 months)    Land value -0.074 
     Lot area 0.056 
     Cum. Precip. -0.023 
        Intercept 1.121 
Spring 0.256 0.065 0.065 Built sq. ft. 0.278 
 (3 months)    Land value -0.081 
     Tmax 0.169 
     Lot area 0.048 
        Intercept 0.730 
Summer 0.340 0.115 0.115 Built sq. ft. 0.295 
 (3 months)    Lot area 0.137 

     
Improve. 
Value 0.045 

     Tmax 0.810 
        Intercept -3.613 
Fall 0.357 0.127 0.127 Built sq. ft. 0.343 
(2 months)    Lot area 0.135 
     Year built -0.518 
     Tmax 0.586 
        Intercept 1.321 

 

Log-linear regressions for each of the four seasons resulted in consistently low R2 values.  

This is a result of weak correlation between the independent and explanatory variables 
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and extremely diverse and disaggregated databases.  These disaggregated databases, 

unlike those of Methods I and II, include millions of accounts over 12 years.  Due to 

large databases and poor correlations log-linear modeling on the household level does not 

produce accurate water use predictions.  This does not suggest that Method III is not a 

useful indicator of valuable parcel characteristics.  Aggregated results of this method be 

captured the value of this method more precisely (Figures 27-30). 

 

Using the seasonal coefficients noted in Table 13, predicted water demand was calculated 

for each household account and time period.  The total water demanded for each year 

(1992-2003) during each season was then calculated.  Unlike previous methods, the 

figures below do not represented calibrations of regression analysis.  Instead, the 

predicted annual and actual annual totals for each season are displayed in Figures 27-30.  

Note high winter water demand in Figure 27 does not reflect the system-wide demand 

lows observed during the analysis of the short-term water demand model.  The sum of 

winter water demands is greatest because the winter season represents four months, 

spring and summer are each three months, and fall represents only two months.   
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Figure 27.  Total annual winter (November-February) water demanded by Seattle 
SPU residential customers, 1992-2003.   
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1992-2002 Total Spring Water Demand
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Figure 28.  Total annual spring (March-May) water demanded by Seattle SPU 
residential customers, 1992-2002.   

 

1992-2002 Total Summer Water Demand
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Figure 29.  Total annual summer (June-August) water demanded by Seattle SPU 
residential customers, 1992-2002.   

 

 

 



 
 
  69
 

1992-2002 Total Fall Water Demand
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Figure 30.  Total annual fall (September-October) water demanded by Seattle 
SPU residential customers, 1992-2002.   

 

Figures 27-30 indicate a better correlation between total seasonal water demands than 

intra-seasonal monthly demands.  These improved correlations are the result of decreased 

variability in the seasonal sums.  The limited number of data points (12) represented by 

the sum totals for each season eliminates the unpredictable and sometimes erratic 

household water use between different months and seasons.  Figures 27-30 reveal the 

hidden benefits of Method III’s household regression model.  The ability of the model to 

capture the shape and trend of seasonal water demand based on individual household 

assessments is important.  These seasonal totals do limit the specificity of the 

disaggregated log-linear model but allow managers to gain appropriate estimates of the 

total water supply needed for each season.  The predicted water demand is consistently 

below the actual water demand.  This is a result of prevalent outliers in the combined 

database.  Outlying values that represent inaccurate water demand draw the predicted 

seasonal totals down for each year.  Future research with more effective database sorting 

techniques will help identify and remove such outlying values.   
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Several of the explanatory PIN database variables in Method III are useful predictors of 

water demand.  Most independent variables/determinants were logically introduced to the 

model depending on season; spring, summer, and fall season models include temperature, 

while winter incorporates cumulative precipitation.  Two variables common to all four 

seasons are built square feet (the number of square footage that contains a structure on 

the parcel) and total parcel lot area.  Although no specific research has been completed 

with these variables, these determinants are the most prevalent variables in Method III 

and represent consistent generalizations about each account’s indoor and outdoor water 

use.  Namely, lot size is an indicator of outdoor water use (with a smaller coefficient 

value during wetter seasons, Table 13) and built square footage indicates the size of the 

house and indoor water use.  As discussed earlier, research to determine trends in lot size 

relative to house age (“year built”) or water use relative to improvement value may 

provide insight to new construction trends, successes in water conservation due to 

changes in urban planning (e.g., zoning), or the effectiveness of new household water-

related infrastructure or appliances.   

 

Poor performance of the model on the household level should not determine the long-

term effectiveness of Method III.  Though the research goal for this thesis seeks to create 

a highly disaggregated water demand model, Method III fully incorporates the 

household-specific, spatially disaggregated water data with a more traditional long-term 

model approach.  Long-term water demand models, as shown in the SPU forecasts 

(Figure 23) are often generalizations of water demand, or sum totals of the demand 

anticipated for a certain user group during an entire year.  Method III is capable of 

performing the same task, but employs specific user data over distinct time periods to 

more accurately represent water demands.  A challenge to maintaining this new method is 

retaining accurate water demand databases.  While a method of extrapolation may be 

easiest for predicting future seasonal water demand totals, this is less accurate than 

specific household estimates of future demand.  The benefit of using PIN database 

 



 
 
  71
 
variables is that these variables are easy to predict, therefore simplifying data needs for 

long-term demand forecasts.    

 

Revised Seattle Long-term Model Conclusions 

The recruitment, organization, and manipulation of SPU, PSRC, and urban planning 

databases were critical to the revised methods for Seattle’s long-term demand model.  

Previous research in Puget Sound demand forecasting has not attempted the difficult task 

of joining such large and detailed databases.  This research effort contributed 

significantly to the knowledge and availability of water demand data and determinant 

relationships.  In addition, these methods introduced the possibility of using highly 

disaggregated data to create more accurate and realistic long-term residential water 

demand models.   

 

The spatially disaggregated water use in Method I was not entirely successful due to the 

aggregation of annual water use data.  This effort did, however, initiate the idea of 

geographic sectors of water demand.  To capture more realistic distributions of water 

demand, future research using the geographic distribution of water demand might be 

more accurate if regions are based on pressure zones or transportation analysis zones.  

Methods II and III use the household-specific approach to estimate water demands.  The 

benefits of these approaches are numerous; they are accurate representations of diverse 

water needs and provide resource managers with more information about seasonal or 

regional water demands.  Future work using these methodologies should include the 

regular recruitment of user-specific water demand data, experimentation with specific 

parcel-based variables and water use (e.g., are higher improvement values representative 

of lower indoor water use?), and regional assessments of water demand according to 

neighborhoods or residence type.   

 

Research for the revised long-term water demand model for the Seattle region suggests 

that highly disaggregated water demands cannot be used effectively unless properly 

 



 
 
  72
 
preprocessed.  In addition, disaggregated water demand models need several 

determinants, representative of social, economic, and environmental factors.  Though 

statistical correlations between highly disaggregated predicted water demand and actual 

demand may be weaker than typical expectations of forecast or regression models, 

disaggregated water demands, by region, season, or customer are critical components to 

more precise forecast models.  As urban demands on water increase with growing 

populations, environmental needs, and climate change impacts, more diverse and precise 

water demand models will be increasingly useful to water resource managers.   
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Chapter 5.  Conclusions and Recommendations 
 

Water is like the blood in our veins. 
-Levi Eshkol, Isreali Prime Minister, 1962 

 
 
And it never failed that during the dry years the people forgot 
about the rich years, and during the wet years they lost all memory 
of the dry years. It was always that way. 

- John Steinbeck, East of Eden 
 

Due to increasing global populations, urban development, requirements for fish flows, 

and hydrologic changes due to climate change, nearly 7 billion people in 60 countries 

could face challenges due to water scarcity by 2050 (Nature, 2003).  While many 

developing countries confront serious difficulties due to water quality issues, the western 

U.S. must address the consequences of drought conditions and demands that exceed the 

water resources available.  Like the blood in our veins, water is a necessity to all life 

forms and pursuits.  Consequently, changing global and regional circumstances have 

increased the need for accurate predictions of both water supply and demand.   

 

Nearly every decision we make is based on a forecast or prediction about some future 

condition.  Demand forecasting is an essential part of water resource management 

decisions.  Utility managers are responsible for answering dozens of questions related to 

water demands; including inquiries about seasonal patterns, regional supplies, supply 

development, climate variability and change impacts, financial impacts, and changes and 

consequences of conservation (AWWA, 1996).  As our knowledge about current and 

future water demands improves, the ability of resource managers to make confident 

assessments about the impacts of climate change, demand management, changes in urban 

planning, and the outcome of long-term water resource conflicts improves.   

 

This research explores the theory and history of water demand forecasting, short-term 

applications of water demand forecasts, and the value of highly disaggregated water 
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demand model methodologies.  Some of the conclusions drawn by these research efforts 

are noted below:   

 

• Demand forecasting models are critical to successful resource management 

Research in water resource management has revealed the consequences of 

inaccurate water demand forecasting.  Unexpected droughts, financial crises, 

over-use of resources, or unnecessary infrastructure development are the result of 

poor anticipation of water demands and inflexible resource management.  

Examples of this include the Klamath Basin water crisis in Oregon and California, 

the Lower Colorado water conflict, and many international water crises (e.g., 

Hermanus, South Africa).    

 

• Models are created for both understanding and prediction 

Throughout the modeling process it is easy to be absorbed by the pressure for 

accurate forecasts.  According to other simulation scientists, the value of forecast 

models is not only in the forecasts they create, but the process that creates them.  

Improved understandings of the determinants of water demand provide 

information about the relationship between key social, economic, and 

environmental variables and water consumption. 

 

• Short-term models provide six-month forecasts of regional water demand 

Using NCEP climate forecasts, short-term water demand models for the Puget 

Sound region provide seasonal guidance for utility managers.  According to the 

forecasts during 2003-2004, six-month forecasts for system-wide water demand 

are significantly affected by baseline demands (winter water demand) and climate 

factors such as temperature and precipitation.  Forecast models for 2003 

calibrated with R2 values above 80% and were validated with R2 of 60-85%.  The 

six-month forecasts demonstrated improved skill and decreased RMSE over time.  

Demand hindcasts during 1989-1999 confirmed the capabilities of the short-term 
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model.  Errors in the hindcast output are largely the result of inaccuracte NCEP 

climate hindcasts, unpredictable changes in the behavior of water users, and SPU 

curtailments. 

 

Six-month forecasts are also an important part of general system models that 

incorporate multiple supplies and demands to help prepare resource managers and 

aid decision making processes.  The short-term model will be used to generate on-

going forecasts using updated NCEP climate forecast information.  These 

forecasts will be used in Seattle operations models and future Puget Sound water 

resources research. 

  

• Disaggregated water demand models are complex systems that may result in more 

accurate and accountable long-term demand forecasting 

The methods detailed in Chapter 4 indicate that while the value of disaggregated 

water demand data is often lost in its variability, such databases could be 

significant to the improvement of traditional and simplistic long-term demand 

models.   

 

Methods pursued in this study indicate that aggregated residential water demand 

data and household characteristics correlate well but do not adequately represent 

actual household water demands.  In addition, while spatial disaggregation of 

water demands effectively separates data and may identify trends in water use 

based on land use or residential density, this method did not produce a robust 

model.  The most effective method produced seasonal sums of total water demand 

based on the results of a highly disaggregated model.  Method III utilizes highly 

disaggregated data but presents useful results for resource managers.  Though data 

intensive, the right combination of land use, climate, and household related 

determinants, as well as careful aggregation of detailed data, results in a useful 
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framework for continuing research in natural resource management and urban 

planning.   

 

These conclusions also represent hopeful applications of the research completed in this 

thesis.  An automated short-term forecasting model can be regularly updated with 

recalibrated coefficients, climate forecasts, and recent water demand data.  Short-term 

forecasts can be used in decision support systems and models for the Puget Sound region.  

The long-term modeling efforts have not only identified key databases for future 

experimentation in disaggregated demand forecasting analysis, but with additional 

analysis can be incorporated into detailed Puget Sound urban planning simulation model.   

 

These conclusions are not without a need for future research:   

• Regular calibrations and experimentation with new variables is important for the 

on-going use of the short-term demand model.  Consideration of different 

atmospheric variables, such as a clear-sky index, may be useful for certain 

seasons.  In addition, future research on short-term demand modeling might 

include altering the time-step of the model or improving the metrics for model 

evaluation.  Finally, future modeling efforts should include discussion with local 

utilities regarding changes in supply flows, resource distribution or financial 

policies, regional supply opportunities, community relations, and conservation. 

 

• The disaggregated modeling efforts will be improved with closer examination of 

relationships between water use and specific urban planning or land use-related 

variables.  In addition, future research should encourage the collection of both 

household and parcel-related information; this may occur as formal independent 

surveys or more detailed inquiries to existing agencies such as the PSRC.  

Improved availability of highly disaggregated data from all sectors, including 

household and parcel-based information related to geographic, social, economic, 
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and environmental sectors, may improve the correlation between actual and 

predicted household water demands.    

 

As in the short-term model research, future long-term model work should also 

consider local utility changes in supply flows, resource distribution or financial 

policies, regional supply opportunities, community relations, and extending 

conservation plans.  While the modeling research accomplished in this study did 

not produce a model prepared for long-term water demand forecasts, further 

calibration and consideration of the aforementioned suggestions may lead to 

successful long-term forecasts for the Seattle region.   

 

Determined to disprove Sewell’s characterization of water resource planning as unable to 

anticipate change, this research creates new models and relationships for resource 

prediction and management.  As we enter a new era of potential resource scarcity and 

increasing resource politics, flexible and inventive resource management will prove 

techniques such as demand forecasting critical to the preservation of our most treasured 

natural resources.   
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Appendix A.  Short-term Model:  Seattle  
 

Included are the remaining calibration and validation figures for the winter and spring 

seasons for the Seattle short-term model.   

  

Winter Calibration Model:  1989-1998 (R2 84%) 
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Figure 1A.  Seattle’s winter water demand (system-wide) model calibration:  
actual (historic) versus predicted model.  
 

Winter validation:  1999-2002

R2 = 0.5758
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Figure 2A.  Winter water demand (system-wide) model validation:  actual 
(historic) versus predicted model for the Seattle region.  
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Spring Calibration Model (1989-1998):  R2 82%

100

125

150

175

200

225

1989 1989 1990 1991 1993 1994 1995 1996 1997 1998
time

de
m

an
d,

 m
gd

Actual
Predicted

 
Figure 3A.  Seattle’s spring water demand (system-wide) model calibration:  
actual (historic) versus predicted model.  
 

Spring validation:  1999-2003

R2 = 0.7676
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Figure 4A.  Spring water demand (system-wide) model validation:  actual 
(historic) versus predicted model for the Seattle region.  
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Appendix B.  Short-term Model:  Tacoma and Everett  
 

Both the Tacoma and Everett models were designed to forecast only municipal water 

demand.  Though industrial demands are a significant part of both utilities demands, they 

are far less variable and are much simpler to predict, as they are managed regularly.  As 

in the Seattle model, the Tacoma and Everett models are based on a log linear regression 

over four seasons and similar independent variables.   

 

Tacoma summer calibration:  1990-1999 (R2 83%)

30

40

50

60

70

80

90

1990 1990 1991 1992 1993 1993 1994 1995 1996 1996 1997 1998 1999
Time

D
em

an
d,

 m
gd

Actual
Predicted

 
Figure 1B.  Tacoma’s summer water demand (system-wide) model calibration:  
actual (historic) versus predicted model.  
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Tacoma summer validation:  2000-2003

R2 = 0.8053
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Figure 2B.  Summer water demand (system-wide) model validation:  actual 
(historic) versus predicted model for the Tacoma region.  

 
The remaining seasons for the Tacoma model were calibrated and validated using similar 

techniques.  The fall season was calibrated using 1990-1999, winter:  1992-2001, and 

spring was calibrated over all the data due to weak results of the selected years.  The 

coefficients used for each season for the Tacoma model are displayed below.   

Table 1B.  Tacoma short-term model variables and coefficients. 

Spring  Winter  
intercept 1.07773 intercept 0.0996
LnTmax 0.21332 add5LnTmax -0.0266

add5LnPrecip -0.0429 add5LnPrecip -0.0119
LnTmaxlag 0.13467 add5LnTmaxlag -0.0115

Ln$ -0.0201 Ln$ -0.0406
LnwH2O 0.46376 LnwH2O 0.23323

LnH2Olag 0.02703 LnH2Olag 0.76691
 

Fall  Summer  
intercept -0.9113 intercept 0.7283
LnTmax 0.17118 LnTmax 0.6203

add5LnPrecip -0.07 add5LnPrecip -0.2139
Ln$ 0.07595 LnTmaxlag -0.2961

LnwH2O 0.70506 Ln$ 0.0549
LnH2Olag 0.47363 LnwH2O 0.0346

  LnH2Olag 0.6393
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Due to the consistent and large changes in the coefficients during the calibration tests, 

each season of the Everett model was calibrated over the entire record (1990-2003).   

 

Everett summer calibration:  1990-2003 (R2 84%)
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Figure 3B.  Everett’s summer water demand (system-wide) model calibration:  
actual (historic) versus predicted model.  
 

Table 2B.  Everett short-term model variables and coefficients. 

Spring  Winter  
intercept -0.322 intercept 0.6691

add5LnTmax 0.1064 LnTmax -0.0553
add5LnPrecip -0.087 add5LnPrecip 0.0135

add5LnTmaxlag 0.0193 LnTmaxlag -0.01
Ln$ 0.0818 Ln$ 0.0798

LnwH2O 0.3818 LnwH2O 0.4145
LnH2Olag 0.663 LnH2Olag 0.4384

 

Fall  Summer  
intercept -0.8332 intercept -1.096
LnTmax 0.127 LnTmax 0.7302

add5LnPrecip -0.0133 add5LnPrecip -0.128
LnwH2O 0.5765 LnTmaxlag -0.089

LnH2Olag 0.5704 Ln$ 0.2108
  LnwH2O 0.4094
  LnH2Olag 0.4472
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