

- Slack water corresponds to high water
- Point at which current slows to zero & reverses
- Ebb current flows seaward until LW
 - Slack water corresponds to low water
 - Point at which current slows to zero & reverses
- · Maximum speed halfway between slacks
 - Speed proportional to range (spring vs. neap)
 - Volume of water transported in 6 hrs. 12 min.

per unit volume

- Grams per cm³ (=cc, =ml)
- Symbol = ρ
- ρ of pure water at 4°C = 1.0 g/ cm³

- Salts make water more dense
 - In 35 g/kg seawater (at 4°C) density
 = 1.028
- Temperature also affects density
 - Warm water expands, density decreases
 - Cold water contracts, density increases

- Waters of different density at different depths
- Buoyancy less dense water tends to float atop more dense

\neg

Fresher water floats & saltier water sinks
 (constant temperature)

 Lower density atop higher density

- Anything that changes density
 - Heating & cooling
 - Freshwater runoff
 - Evaporation & precipitation

Lecture 7 © 2006 University of Washington

Stabilizing processes

- What external natural processes enhance vertical stratification & stability?
 - Surface solar heating (T)
 - Freshwater runoff (S)
 - Rain (S)

Estuaries

- All estuaries are embayments
- But embayments without rivers ≠ estuaries
- · Very elastic size definition
 - Small stream mouth (Pipers Creek, N. Seattle)
 - Large river mouths (Columbia)
 - Complex embayments (Puget Sound)

Lecture 7 © 2006 University of Washington

Puget Sound

- Low salinity
 - Surface salinity away from river mouths ranges from 28-29
 - At river mouths or in very sheltered inlets of the south Sound, salinity can be very low (brackish, 10 or less) depending on season
 - Subsurface salinity 30 31, depending on season
 - Inflowing ocean water salinity \sim 32

- Classified by pattern of vertical stratification
- Salinity is the most important factor
 - · Unlike temperature dominance in most oceans
 - Change in salinity between upper and lower layers - See table in lab manual p. 38.
- Vertical salinity gradient is a balance
 - · River flow creates the stable vertical stratification
 - Mixing due to tidal action disrupts stratification.

- · Dominated by high river runoff
 - Large river mouths
 - Columbia & Mississippi
 - Smaller river mouths entering larger estuaries
 - Duwamish entering Puget Sound
 - Named for sharp boundary between river & sea water
 - · Strong halocline moves back and forth with tides
 - Strong vertical stratification

Lecture 7 © 2006 University of Washington

• Flushing time = time to 100% replace volume

Flushing in Estuaries

- (Inter)tidal prism = average volume entering & leaving over tidal cycle
- Average volume of estuary ÷ prism = # tidal cycles to flush total volume of estuary
 - Use tidal period (diurnal or semidiurnal) to convert to time in hours and minutes.

Biology

Lecture 7 © 2006 University of Washington

Limits on Primary Production

- Light is limiting below the sea surface and in winter.
 - Phytoplankton have strategies to remain at or near the surface
 - Slow sinking
 - Swimming
 - Often become dormant during winter

Ocean/ENVIR 260 Winter 2006 Lecture 7

© 2006 University of Washingto

Limits on Primary Production

- Nutrients become depleted at the surface due to sinking organic matter
 - Depletion caused by strong stable stratification
 - Phytoplankton sink when nutrients are scarce
 - Replenished by vertical water movement
 - Estuarine flushing
 - Entrainment & tidal pumping
 - Vertical mixing by winds & strong currents

