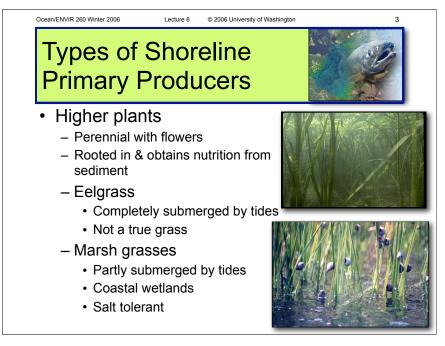
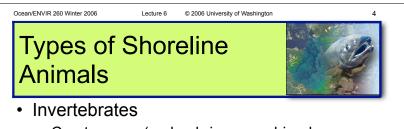
Lecture 6 © 2006 University of Washington

· Life on the Sound floor

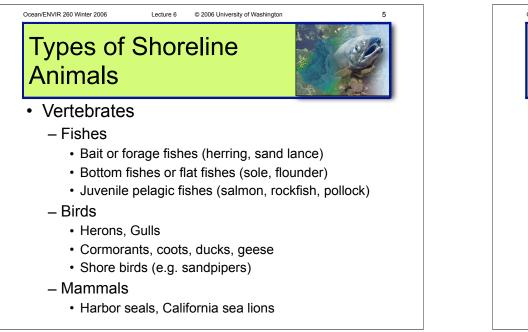
Shoreline Ecology

- "Benthic" = living on the bottom
 - May live on other organisms on the bottom
- Three relationships with the substrate
 - Attached to rocks (e.g., barnacles)
 - Burrrowed in mud, sand, gravel (e.g., clams)
 - Mobile along the bottom (e.g., sole & flounder)


Ocean/ENVIR 260 Winter 2006 Lecture 6 © 200


6 © 2006 University of Washingto

Types of Shoreline Primary Producers


Algae

- No true roots, flowers, leaves, etc.
- Microalgae (single-celled or colonial)
 - Phytoplankton (free-floating)
 - Benthic microalgae (on bottom)
- Macroalgae = seaweeds (rockweed, sea lettuce, kelp, etc.)
 - Attached to bottom by "holdfast"

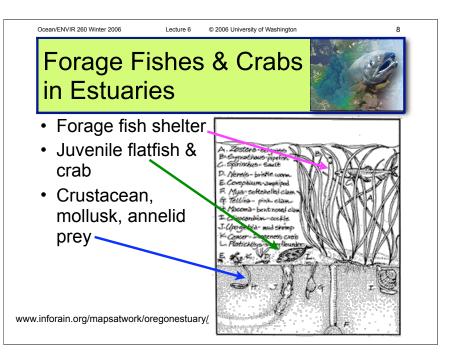
- Crustaceans (crab, shrimp, amphipods, copepods)
- Mollusks (clams, snails, whelks, chitons)
- Annelid worms
 - Lugworms burrow
 - Nereid worms migrate
 - "Feather duster" worms attached
- Echinoderms (urchins, stars, cucumbers, dollars)
- Plankton (microscopic free-floating) or benthic

Ocean/ENVIR 260 Winter 2006 Lecture 6

© 2006 University of Washington

- Kelp beds
 - Life cycle

Shorelines


- · Prefers deep, fast-moving waters
- Annuals with alternation of sexual & asexual stages
- Nutrition
 - Grow fast, highly productive

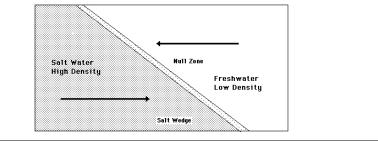
Functions of Vegetated

- Eaten by few animals, shed detritus
- · Support benthos where detritus accumulates
- Habitat
 - · Shelter for juvenile & adult fish
 - Substrate for microalgae invertebrates

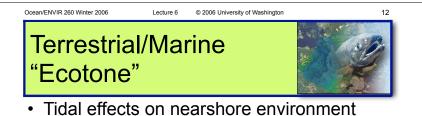
Ocean/ENVIR 260 Winter 200 Lecture 6 © 2006 University of Washington Functions of Vegetated Shorelines

- Eelgrass
 - Life cycle
 - Prefers shallow, slower-moving waters
 - Perennial with sexual flowering & asexual rhizomes
 - Nutrition
 - Grows fast, more productive than crops
 - Eaten by few animals, sheds detritus
 - Supports benthos where detritus accumulates
 - Habitat
 - Shelter for juvenile & adult fish
 - Substrate for algae & invertebrates

Lecture 6 © 2006 University of Washington


Terrestrial/Marine "Ecotone"

- Ecotone = "zone of transition between adjacent ecological systems"
 - Estuary = where salt water is diluted by fresh water from rivers
 - Large-scale: all of Puget Sound
 - Small-scale" a river or stream mouth
 - Site where fine silt & mud from fast-moving rivers settles out
 - Fills shoreline & creates marshes
 - Promotes expansion of vegetated shallow areas



- Meeting of river & "salt wedge"
 - "Null zone" or "tidal front" of weak current
 - "Turbidity maximum" near bottom
 - Fine silt & organic matter sinks & accumulates

- Fresh water affects salinity, pH (acidity), temperature
 - Greater effect in winter because of higher flow
- Carries nutrients from watershed
 - May carry contaminants too

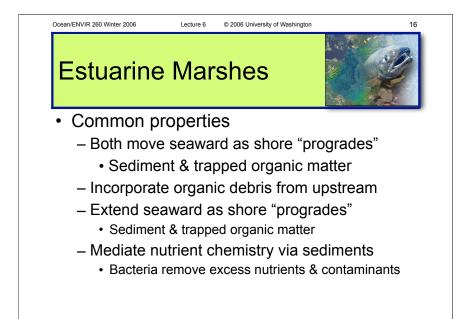
- Sharp gradients in tidal exposure
 - Near highest & lower water levels
 - Affects drying, heating (summer), chilling (winter), exposure to rain (mostly winter)
- Strong currents in some channels
 - Tidal influence & salt extend several miles upriver
- Weak tides & circulation in other areas

Lecture 6 © 2006 University of Washington

Terrestrial/Marine "Ecotone"

- Nearshore generally an area of high biological diversity
 - Sharp gradients in environmental properties
 - · Salinity, temperature, tidal exposure, nutrients
 - Creates large number of adjacent ecological "niches"
 - Some organisms stay put (e.g. burrowers)
 - Must tolerate wide fluctuations in conditions
 - Some organisms are just passing through
 - Salmon adjust from fresh salt water environment

Ocean/ENVIR 260 Winter 2006 Lecture 6 © 20


Tidal Freshwater

Habitats

© 2006 University of Washingto

- · No salt water penetration
 - But soil is saturated & water level rises & falls with tides
 - Occasionally flooded
 - Side-channels & sloughs
 - · River current may reverse with tide
- · Easily colonized by settlers
 - Originally forested
 - Very little intact habitat remains

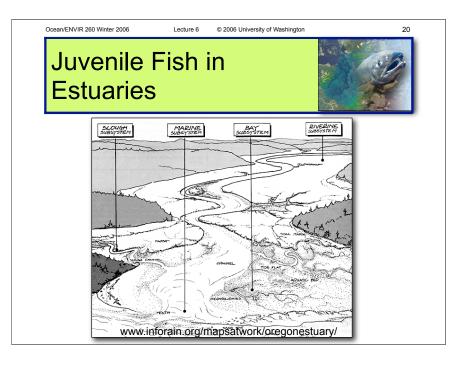
Lecture 6 © 2006 University of Washington

Estuarine Food Chain

- Based on detritus
 - Mainly from primary producers
 - Micro- & macroalgae, e elgrass
 - Marsh & terrestrial plants
 - Depositional environment
 - Especially in sloughs & protected marshes
- · Fish & other predators on invertebrates
 - Marshes & forests provide habitat for prey
 - Some washed down from upstream
 - Insects key for juvenile chinook salmon

Ocean/ENVIR 260 Winter 2006

Lecture 6 © 2006 University of Washingto



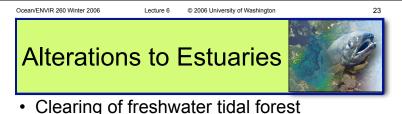
Juvenile Fish in Estuaries

- Feed at low-flow "tidal front" & "turbidity maximum"
 - Prey trapped as well as the organic matter they consume
- · Residence length varies by species & size
 - Some salmon (chum) linger, others (pink) move offshore quickly
 - Separate from duration of fresh water rearing
 - Smaller smolts linger longer to adjust
 - Move farther offshore as they grow

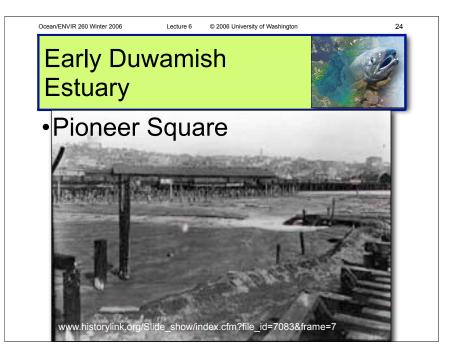
- Different "niches" by species & size
 - Smallest salmon found in marshes, mudflats, eelgrass meadows
 - Prey on small crustaceans & insects on bottom
 - Larger fish in open tributary channels & tidal fronts
 - Prey on larger benthic crustaceans, fish larvae, drift insects, planktonic crustaceans

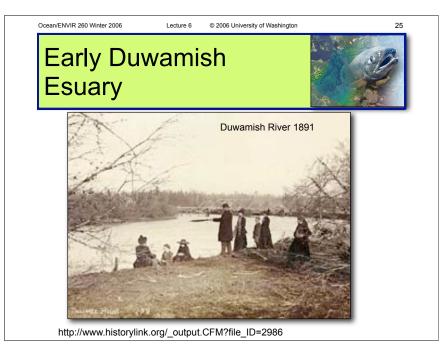
Lecture 6 © 2006 University of Washington

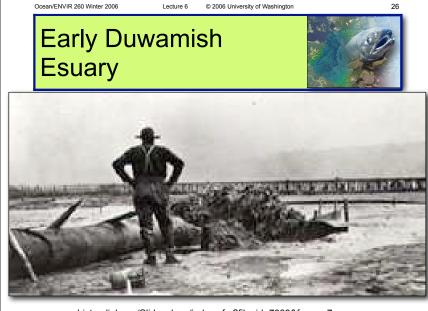
Forage Fishes in Estuaries

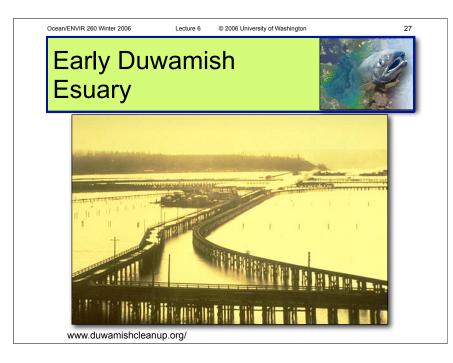

- Small as adults
 - Prey for larger fish, birds, mammals
 - Occur in large, dense schools
 - Herring, Smelt, Sand Lance
 - Smelt & sand lance spawn on fine intertidal sand & gravel beaches
 - Herring spawn on subtidal estuary kelp & eelgrass
 Generally spawn at site of hatching
 - · Some anadromous smelt spawn in rivers & lakes

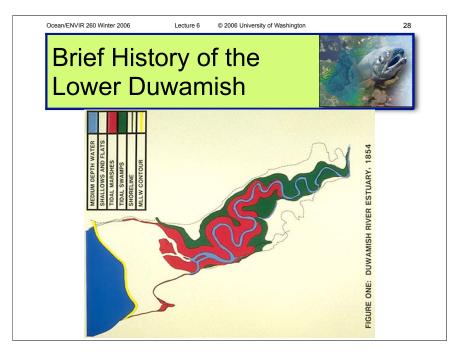
Ocean/ENVIR 260 Winter 2006 Lecture 6 © 200

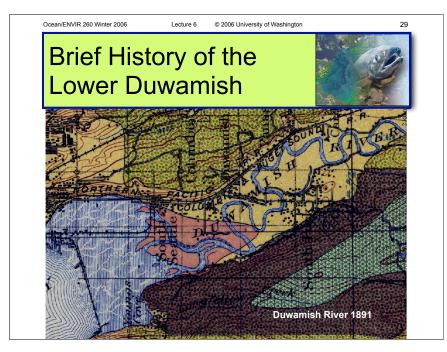

© 2006 University of Washingto

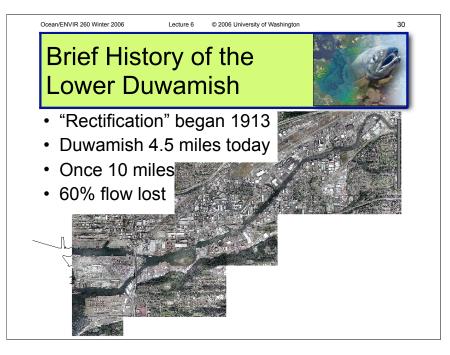

Forage Fishes & Crabs in Estuaries


- All forage fish short-lived & fastreproducing
 - Subject to wide, rapid population fluctuations related to climate & habitat
 - All spend juvenile stage close to shore
- Dungeness crab juveniles also rear in nearshore estuarine habitat
 - Float there as larvae in plankton
 - Survival of benthic juveniles depends on shelter found on mudflats

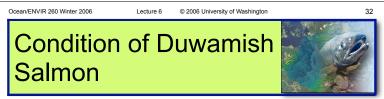

- Diking, draining, dredging, filling marshes
- Diking, draining, dredging, filling marshes & mudflats
 - Reduced area of habitat
 - Reduced source of detritus for food chain
- Channelizing & filling tidal creeks & sloughs







www.historylink.org/Slide_show/index.cfm?file_id=7083&frame=7



- Today one remnant ox-bow
- 2% of historic mud-flat estuary area
- 11% of original tidal marsh area
- CSO's
- Hardening of banks
- Dredging of channel

- "Chinook have declined to such low numbers that people doubt that the population persists, even in remnant numbers."
 - Re-routing of river, hardening of banks
 - Upstream dam
 - Major role played by hatchery fish
 - · Hatchery run persists as wild run declines
- Small numbers of pink & sockeye, wild & hatchery steelhead also present

Lecture 6 © 2006 University of Washington

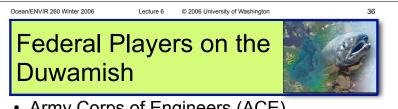
Condition of Duwamish Salmon

- Formalized & coordinated habitat restoration activities began late 1990's
- Goal to return wild runs to 17,000 to 37.000
 - Productivity of 1.0, i.e., one fish returning for each spawner = full replacement
 - Would yield returns of 1,000 to 4,200 in next ten years
 - 50-100 year timeline

Ocean/ENVIR 260 Winter 2006

Salmon

Lecture 6 © 2006 University of Washingto


Condition of Duwamish

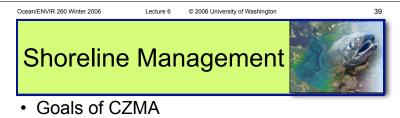
- Focus of estuary recovery
 - Area that has not been irreversible altered
 - River miles 7.0 5.5, possibly down to RM 4.8
 - "Estuary Transition Zone" (salt wedge or tidal front)
 - · Where fish adjust from fresh to salt water
 - 15–20 acres intertidal habitat restored 1990's
 - · "Showing some results"
 - Plans to acquire, recreate & revegetate shallow-water & side-channel habitat

Ocean/ENVIR 260 Winter 2006 Lecture 6 © 2006 University of Washington Chemical Indicators in Duwamish

- Water quality
 - Dissolved oxygen, pH, temperature, fecal coliform bacteria, chemical contaminants, nutrients, suspended sediments (turbidity)
- Sediment quality
 - Most toxic chemicals are poorly soluble so accumulate in sediments
 - Sources: CSO's, conventional sewage, industrial effluents
 - Metals, organics

- Army Corps of Engineers (ACE) - Regulates & alters navigable waters
- Fish & Wildlife Service - Regulates terrestrial & freshwater biota
- National Oceanic & Atmospheric Admin. (NOAA)
 - Regulates & researches salt water & Great Lakes
- Environmental Protection Agency (EPA)
 - Regulates toxins in environment

Lecture 6 © 2006 University of Washington


State & Local Players on the Duwamish

- Dept. Ecology
 - Regulates shorelines & pollutants
- Dept. Fish & Wildlife
 - Regulates terrestrial & aquatic biota
- Muckleshoot, Suquamish tribes
- King County (& others upstream)
- City of Seattle (& others upstream)
- Public & private property owners - Port of Seattle, Boeing

- Management Act of 1972
 - Administered by NOAA
 - www.coastalmanagement.noaa.gov/czm/
 - "The nation's coastal and ocean resources are under increasing pressure from population growth and development."
 - Coastal areas host over 50% of the total U.S. population within only 17% of the nation's land area."
 - Voluntary, administered by 34 coastal states

- - Protect, develop, restore coastal resources
 - Encourage & assist the states in "wise use"
 - Promote special plans for special areas
 - Coordinate agency actions federal to local
 - Eligibility for federal grants
 - "Federal consistency"
 - · Federal & federally funded & licensed actions must conform to approved state plans

Ocean/ENVIR 260 Winter 2006 Lecture 6 © 2006 University of Washington **Shoreline Management** Washington State Shoreline Program - Shoreline Management Act passed 1971 - 1st federal approval in nation (1974) - Dept. Ecology lead agency Meshes with other laws Clean Water Act, Clean Air Act (state versions) Environmental Policy Act (state) Growth Management Act (state)

- Local governments develop "Shoreline Master Programs" under state guidelines

http://www.ecy.wa.gov/programs/sea/czm/index.html

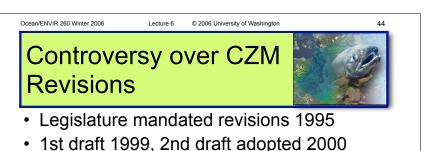
Lecture 6 © 2006 University of Washington

- Washington State Shoreline Program goals:
 - "Shorelines are among the most valuable and fragile natural resources"
 - Encourage water-dependent uses
 - Protect shoreline natural resources
 - Promote public access
 - "Prevent the inherent harm in an uncoordinated and piecemeal development of the state's shorelines"

http://www.metrokc.gov/shorelines/about.aspx

Ocean/ENVIR 260 Winter 2006 Lecture 6

© 2006 University of Washingto


Shoreline Master Programs

- Both a land use & an environmental protection program
 - Shoreline inventory
 - · Within 200 feet of water's edge
 - Plan & regulations for shoreline land use
 - >200 cities & 39 counties have developed
 - Subject to revision with public input
 - Most written 1974-1978
 - ~75% slightly or substantially revised
 - Must be approved by Dept. Ecology

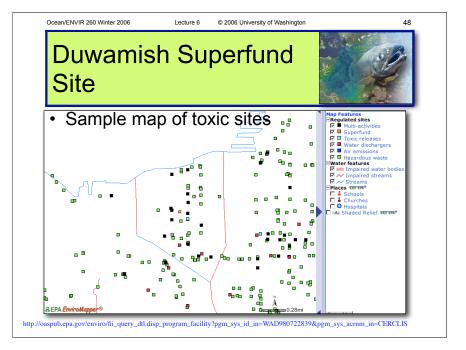
http://www.ecy.wa.gov/programs/sea/czm/index.html

- Require permits for substantial development
- · Establish preferred uses
 - Single family residential
 - Ports
 - Recreation
 - Water-dependent industry
 - Other
- Balance use & conservation
 - Unrestricted development on public or private shoreline is not in the public interest http://www.ecy.wa.gov/programs/sea/czm/index.html

- Challenged in court
 - -Assn. of Washington Business (coalition of business, cities & counties)
 - -Washington Aggregates & Concrete Assn.
 - -Washington Environmental Council defended
 - Shorelines Hearings Board upheld challenge
- Negotiated settlement adopted Dec. 2003

- "Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA)"
- EPA lead agency with partner agencies
- Purpose: Federal funding to clean up "abandoned, accidentally spilled, or illegally dumped hazardous waste that pose current or future threats to human health or the environment."

http://www.epa.gov/superfund/25anniversary/



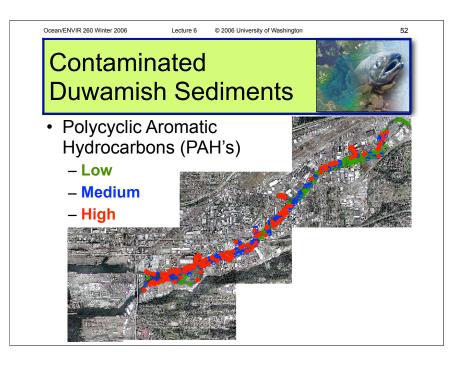
- Include community in decisions & activities
- · Restore area to productive use
- Research on fates of toxins & cleanup methods
 http://www.epa.gov/superfund/25anniversary/

- Harbor Island listed 1983
 - Groundwater
 - Benzene, ethylbenzene, xylene, mercury, cadmium, lead, and zinc
 - Soil & Sludges
 - Heavy metals, polychlorinated biphenyls (PCBs), and petroleum
 - Sediments
 - Heavy metals, polycyclic aromatic hydrocarbons (PAHs), tributyl tin (TBT), and PCBs
 - Environmentally Sensitive Area for wildlife

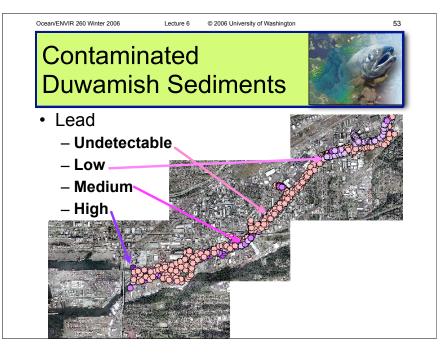
yosemite 1.epa.gov/r 10/cleanup.nsf/5c8919bc41f032578825685f006fd670/5a64831b6521f46b8825650200836f1c?OpenDocument/displaystation and the second statement of the second sta

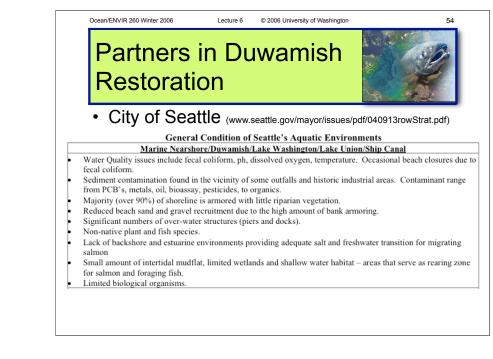
Lecture 6 © 2006 University of Washington

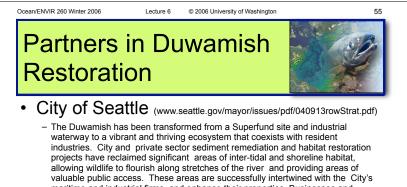
Harbor Island Sediments



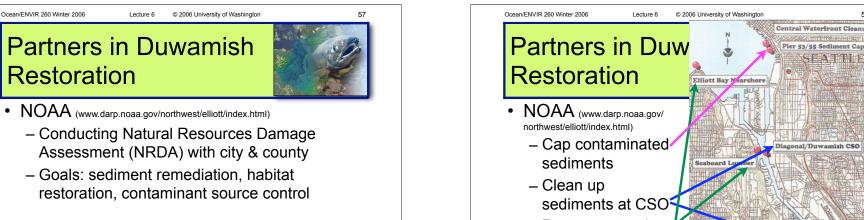
- Todd & Lockheed Martin Shipyards
 - West Waterway heavy metals tackled 1st
 - East Waterway also contaminated
- · Some areas dredged
 - Contaminated material taken to landfill
 - Advantage: material is removed
 - Disadvantage: expensive, can spread toxins
- Some areas capped with clean sediment
 - Cheaper but leaves contaminants in place

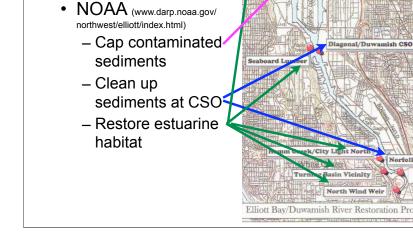

<page-header>


www.epa.gov/r10earth/offices/oec/harbi.gif


<page-header>

http://yosemite.epa.gov/r10/nplpad.nsf/88d393e4946e3c478825631200672c95/173f0efa24b8a828852565920077c26c?OpenDocument





maritime and industrial firms, and enhance their properties. Businesses and residents view the Duwamish as a vibrant and complex ecosystem, and they guard against renewed contamination and water pollution. Puget Sound/Duwamish/Lake Washington/Lake Union/Ship Canal Shorelines Highest Priority • Re-establish critical habitats. Create a physical chain of naturalized (restored & revegetated) refuge areas giving highest priority to: a) large contiguous areas; b) areas adjacent to available habitat; and c) critical gaps. Control water quality and remove contaminated sediments in regulated areas and proximate to habitat refuge areas and public contact recreation points. Medium Priority * Remediate contaminated sediments in non-refuge and non-public contact recreation sites. Lower Priority * Revegetate 'non-refuge' shoreline areas with native plants ٠

- Due for revision by 2009
- Coordinates with County Master Plan & Critical Areas Ordinances

- Monitors safety of seafood for consumption
- Subsistence diet for low-income citizens
- August 2005 advisory not to eat resident fish & shellfish from the lower Duwamish
 - · Sole, perch, flounder, crab. other shellfish
 - Migratory salmon OK
 - Average >700 parts/billion PCB in sole
 - "Safe" level for 1 8 oz. serving per month = 200 ppb
- Contaminant levels appear to be increasing
- Stirred up by dredging contaminated sediments?
 seattletimes.nwsource.com/html/localnews/2002419662_duwamish04m.html

- Duwamish River Cleanup Coalition
 - www.duwamishcleanup.org
 - · People for Puget Sound, Puget Soundkeeper Alliance, WA Toxics Coalition
 - Neighorhood, small business & tribal groups
- Formally recognized by governmental bodies as citizen's advisory group
 - · Hired technical adviser to monitor progress of cleanup & restoration