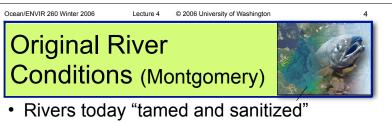
Lecture 4 © 2006 University of Washington

Uniqueness of NW Natural Rivers (Naiman)


- "Pristine temperate rain forests on geologically young terrain"
 - LWD
 - Riparian corridors encourage biodiversity
 - Adaptations of organisms to highly fluctuating environments
 - Ease of invasion by invasive plants
 - Extent of water movement in subsurface channels

Ocean/ENVIR 260 Winter 2006 Lecture 4 © 2006 University of Washington


Uniqueness of NW Natural Rivers (Naiman)

- Number & variety of river channels
 - Diversity of habitats fosters diversity of species & life history strategies
- Assisted by regional & seasonal climate variations
 - Elevation, temperature, rainfall, river flow
 - Highly variable but seasonally predictable
- LWD lasts as long as 7000 years
 - Affects channel configuration & flow
 - Creates diverse habitats & biota

- Rivers changed in prehistory
 - Glaciation
 - Since then:
 - Small
 - · Relatively short-lived
 - · Or confined to only some basins
 - Within the adaptability of diverse & abundant salmon populations
 - · Even as local stocks occasionally crashed or disappeared

- - Even those that have been restored
- Montgomery (Ch. 10) uses Nisgually & Skagit Rivers as case studies
 - Lower reaches reserved for tribe by treaty
 - · Relatively undisturbed
 - Study role of log jams

Lecture 4 © 2006 University of Washington

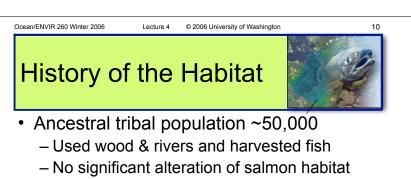
- "Grand old cottonwoods" growing on flood plain
 - Fall into river through natural bank erosion
 - Large enough to remain in place when other logs float downstream
 - Stack up into log jams
- · Log jams divert flow

Wood in Rivers

- Create side channels that once were the main channel
- 2000 logs/mile, 90% in jams

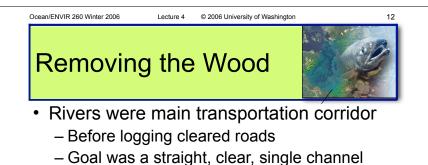
- Create complex web of channels
 - Deepest pools are under & around biggest log jams
 - Both main & side channels
 - Both side channels & pools have reduced flow areas
 - Also overhanging & submerged logs for cover
- Made rivers impassable to boats

- Comparison to "virgin" rivers
 - Hoh & Queets on Olympic Peninsula
 - Almost all "juveniles" in side channels
 - Main stem used for migration & spawning
 - 10 times more fish in side channels
 - In flood plain today:
 - Streams with side channels have 2–3 times more fish
 - Streams in forests have 3-4 times more fish
 - Compared to rural, urban, or agricultural streams


- Skagit pools "full of fish"
- Log jams backed up flood waters during high flows
- · Perennial wetlands in flood plain
 - Ideal summer rearing habitat
 - Slow-water refuges during winter floods
 - Creates wide, flat valley floor

Lecture 4 © 2006 University of Washington

Wetland Functions (Kruckeberg)


- Flood water absorption & storage
- Reservoir in time of drought
- Nurseries for fish
- · Habitat for migratory birds & wildlife
- · Cycling of nutrients—aid productivity
 - Comparable to tropical rain forest
 - Exceeding crop land

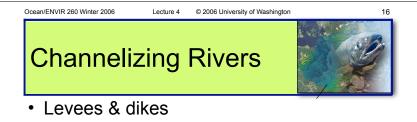
- 1840's first local white settlements
 - Subsistence logging & milling
- 1870's railroads
 - Logging & milling for trade
 - Cleared coastal & lowland areas first

- By 1900 widespread farming
 - Vegetables, berries, etc. on river deltas
 - Dairy cattle in foothills
- Farming impacts
 - Stream diversion for irrigation
 - Removal of riparian vegetation
 - Increased stream temperatures
 - Nutrients, chemicals, sediments in runoff
 - Diking, draining, filling of wetlands
 - 72% loss of Skagit nearshore marsh habitat

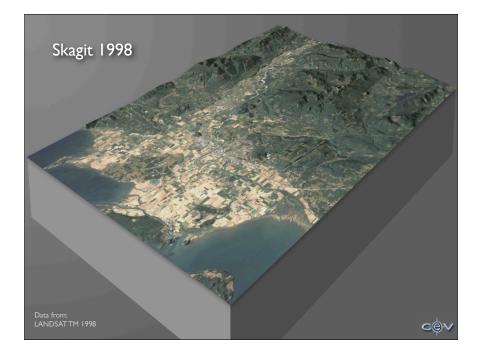
- 1877 settlers dismantled Skagit logjam
 - Wetlands began to dry up
- Army Corps of Engineers clearing 1880
 Peaked 1890–1910
 - 3,000 12-15 foot logs/year from Skagit River
 - 150,000 from five rivers over 100 years

Today We Know

Lecture 4 © 2006 University of Washington



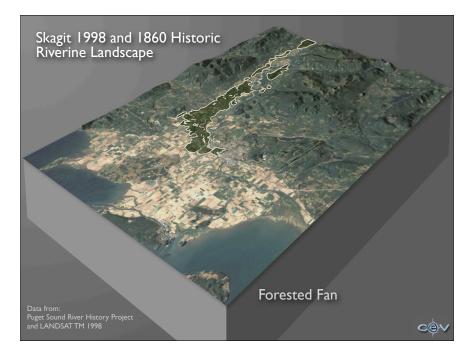
- 1st scientific warning Henry Froelich (OSU) 1973
 - Ignored; salmon needed "clean highways"
- Big trees
 - Stabilize banks, provide cover, create LWD
- Log jams
 - Provide cover & deep pools
 - Divert river source to form side channels
 - Cause river channel to meander & migrate across flood plain

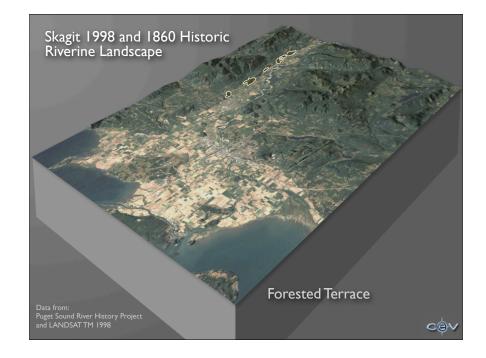

Ocean/ENVIR 260 Winter 2006 Lecture 4 © 2006 University of Washington 15

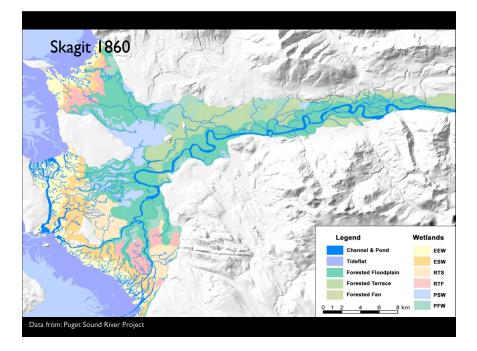
- Settlers ditched & drained flood plains
 - Plugged side channels, built levees/dikes
 - To create rich farm land
 - By 1930's only scattered wetlands remained
 - Greatly reduced habitat for "juveniles"
- · Clearing of small streams followed rivers
 - Often used dynamite
 - "Splash damming" to transport logs to rivers
 - Deadly for salmon
 - Large rivers transport to mills

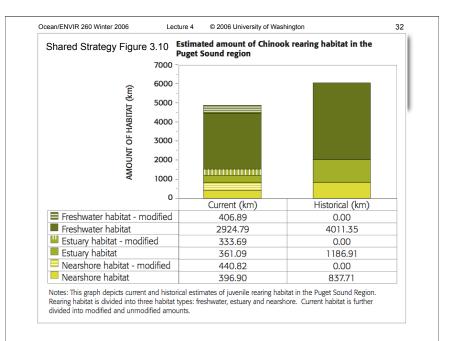
- Dikes confine still waters
- Levees confine moving waters
- Levees speed flow & prevent flooding
 - Push flooding further downstream
 - Necessitate more building downstream
- Encourage building on flood plain
 - More property damage from major floods
 - Especially if levees fail
 - Insurance & rebuilding costs









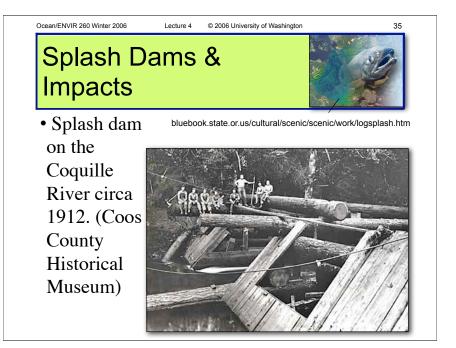


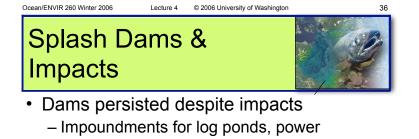
Data from: LANDSAT TM 1998

Lecture 4 © 2006 University of Washington

- Riparian forests were the first ones cut
 - Easiest to reach & transport

Logging Impacts


- Largest trees were most desirable
 - But also most beneficial for habitat
- Clearcutting most efficient way of removing logs
 - Skidding & roadbuilding stripped soil
 - Roots rotted did not hold remaining soil
 - Erosion of soil & debris into streams
- Pioneer mentality & economic necessity


Ocean/ENVIR 260 Winter 2006 Lecture 4 © 2006 University of Washington

Splash Dams &

Impacts

- Logs cut in winter floated down rivers
 Flow was high enough
- Splash dams used to move logs in summer
 - When flow was normally lower
 - 1st built 1881
 - Dams created retention ponds
 - Logs skidded into pond
 - Periodically gates opened to flush logs downstream

- Impoundments for log ponds, power production & irrigation
 - Disrupted natural flow
 - Blocked up- & downstream fish passage
- Logjams cleared using dynamite
 - Log impacts killed fish & eggs
- Floods scoured out gravel
 - Logs eroded banks & silted up bottom
- Hatcheries to mitigate effects early 1900's
- Not eliminated until 1960's

Lecture 4 © 2006 University of Washington

Mills typically sited at river mouths

Sawmills & Impacts

- Tribes protested impacts on salmon 1850's
- Dumped tons of sawdust into streams
 - Carried downstream on winter floods
 - Suffocated eggs & killed prey
 - Clogged gills of juveniles & adults
- Dumping banned by Territorial Legislature
 - Banned 1876 but poorly enforced
 - Practice continued for 50 more years

Ocean/ENVIR 260 Winter 2006 Lecture 4 © 2006 University of Washington

Sawmills & Splash Dams

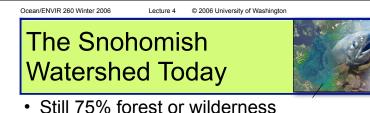
- Dams persisted despite impacts
 - Blocked up- & downstream passage
 - Hatcheries built to mitigate effects of splash dams early 1900's
 - LLWD no longer helped retain gravel
 - Scoured out by floods
 - Impoundments for log ponds, power production & irrigation

- Siltation
- · Higher stream temperatures
- · Artificial log jams
 - Created by dumping of small trees
 - Block fish passage
 - Prompted laws against log dumping & requiring stream-clearing 1950's 1970's
 - But also cleared out "good wood" LWD

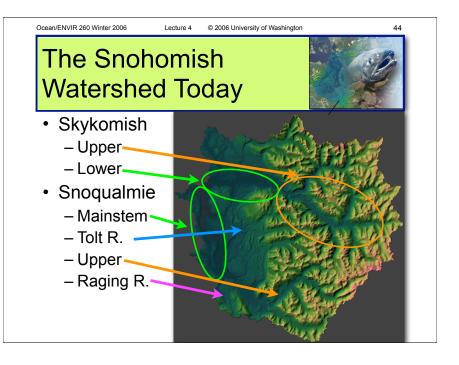
- "misquided forest practices, river
 - misguided forest practices, river management & land use"
- Typical natural river just overtops banks every year or two
 - Little significant impact on humans
- Skokomish has large floods several times per year
- 1929 Cushman Dam built

Lecture 4 © 2006 University of Washington

· Causes of Skokomish floods


Skokomish River

- 1929 Cushman hydroelectric dam built
 - Reduced downstream flow
 - · Reduced ability to transport sediment
- Clearcutting in watershed
 - · Heavy erosion & sediment into streams
 - 6 feet shallower 1950–1990
 - Frequent overflowing


Ocean/ENVIR 260 Winter 2006 Lecture 4 © 2006 University of Washington

Impacts on Salmon Species

- Least affected
 - Chum & pink
 - · Spend shortest time in streams as fry & parr
 - 1-4 months
 - Sockeye rear in lakes
 - Less vulnerable to human impacts
- Most affected
 - Chinook & coho
 - Spend longest time in streams as fry & parr
 - 1-2 years

- 5% agricultural
- Better hydrologic & riparian function
- Better sediment conditions than other PS basins
- 1856 square miles
- 1700 rivers & tributaries
- Projected human population growth 59% 2000–2030

42

Lecture 4 © 2006 University of Washington

The Snohomish Watershed Today

- Skykomish River basin
 - Upper reaches steep with boulders & rapids
 - Some glacial sources, source of gravel
 - Gold Bar to Monroe less steep
 - · Gravel is deposited
 - Channel braided & more stable
 - Channel is more armored
 - Isolated from off-channel habitat
 - Still good spawning areas


Ocean/ENVIR 260 Winter 2006 Lecture 4 © 2006 University of Washington The Snohomish Watershed Today

- Snoqualmie River basin
 - Tolt & Raging major upper tributaries
 - Best spawning habitats at their mouths
 - Tolt a source of gravel but not glacial
 - Mainstem through Carnation & Duvall
 - Farmland & rural
 - River banks straightened & hardened

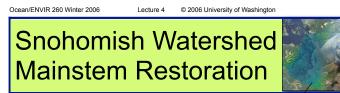
Ocean/ENVIR 260 Winter 2006 Lecture 4 © 2006 University of Washington The Snohomish Watershed Today

- Mainstem Snohomish River
 - Confluence of Skykomish & Snoqualmie
 - 21 miles to multi-threaded delta on Puget Sound
 - Under tidal & salt water influence
 - Upper reach
 - Broad valley with prime farmland
 - Spawning habitat for chinook
 - · Holding & rearing habitat for several salmonids
 - Lower reach
 - Portions straightened & armored
 - Loss of side channels & LWD

- · Habitat for all species
 - Threatened chinook & declining coho
- Chinook habitat
 - Snohomish & lower Skykomish & Snoqualmie mainstems
 - Considered degraded to moderately degraded
 - Skykomish (larger) & Snoqualmie separate spawning populations
 - "Backbone" of PS chinook populations along with Skagit & Stillaguamish

Lecture 4 © 2006 University of Washington

Snohomish Watershed Salmon


- Coho habitat
 - Inhabit smaller tributaries
 - More abundant than chinook
 - Hundreds of miles of high-quality habitat in middle & upper reaches
 - Largest population of wild coho in Puget Sound

Ocean/ENVIR 260 Winter 2006 Lecture 4 © 2006 U

Lecture 4 © 2006 University of Washington

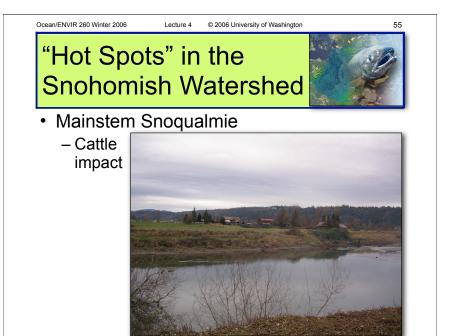
Snohomish Watershed Mainstem Conditions

- 82% of off-channels sloughs & ponds disconnected
- 74% loss of flood plain wetlands
- 44 miles of dikes wall off flood plain
- Several thousand acres of wetland disconnected
- Little riparian forest, LWD & logjams
- Stream bank erosion
- Culverts block fish passage

- Dike setback
 - Allows some channel migration & sidechannel & wetland formation
 - But still protects property
- Plant trees & native vegetation
- 10-year goals (2015)
 - 10.4 miles of river-edge habitat
 - 256 acres of riparian habitat
 - 41 logjams
 - 167 acres off-channel habitat

- General priorities for habitat
 - Protect the best remaining habitat
 - Restore those habitat areas that are still functioning
 - Restore severely impaired non-functioning habitat where feasible
- Land-use regulations alone will not be sufficient
 - Active participation & stewardship by land owners is essential

Lecture 4 © 2006 University of Washington


"Hot Spots" in the Snohomish Watershed

- Dams & reservoirs on the S. Fork Tolt River, Sultan River
 - Domestic water supply
 - Also withdrawals from Pilchuck River in summer
- Snoqualmie Falls & Sunset Falls (Skykomish)
 - Natural fish-passage barriers
 - Fish now transplanted above Sunset Falls

"Hot Spots" in the Snohomish Watershed

- Mainstem Snoqualmie
 - Diking, bank hardening, channelizing, ditching & draining for agriculture
 - Channel little changed for 50 years
 - Cut-off side channels &"oxbows"
 - 81% loss of flood plain wetlands
 - Loss of riparian vegetation & LWD
 - Cattle access: Bank erosion & pollution
 - Spawning limited to a few sites with gravel
 - Excessive temperatures (>18°C) in summer

- Leave & restore riparian forest buffers
 - How wide to make them?
 - Loss of developable land
 - Restore LWD & allow trees to fall into streams
 - Obstacle & hazard to boating
- Allow for migration of channel
 - Very difficult unless flood plain is abandoned
 - Buildings & roads
 - Also requires wider forest buffers

Lecture 4 © 2006 University of Washington

Snohomish Watershed Recovery Plan

- Snohomish Salmon Recovery Forum
 - State Dept. Fish & Wildlife
 - Tulalip Tribe
 - County & city governments
 - Farmers, businesses, non-governmental organizations, concerned citizens
 - About 100 restoration projects already completed
 - Balance conservation, economic gain, private property, health & safety

Ocean/ENVIR 260 Winter 2006 Lecture 4 © 2006 University of Washington

Snohomish Watershed Salmon Goals

- Chinook populations 1999–2003
 - Steep decline since late 1970's
 - About 1200 wild spawners on Snoqualmie
 - About 5.7% of historic numbers
 - 2245 if hatchery fish included
 - Goal of 25,000
 - About 1700 wild spawners on Skykomish
 - About 3.4% of historic numbers
 - 4100 if hatchery fish included
 - Goal of 39,000

Ocean/ENVIR 260 Winter 2006 Lecture 4 © 2006 University of Washington Snohomish Watershed Salmon Trends

- Mainstems
 - Focus of restoration efforts (with estuary)
 - Cities of Monroe, Sultan, Gold Bar, Duvall, Carnation near quality spawning grounds
 - Forecast 10% loss of forest cover, 4% increase in impervious cover over 25 years
- Tributaries
 - 44 streams have low-flow problems
 - Increased water demand as population grows 40% by 2020 (Tolt Reservoir)