The Salmonid Species

- N. American salmon (2 more Asian species)
 - Chinook ("King")
 - Coho ("Silver")
 - Sockeye
 - Chum ("Dog")
 - Pink ("Humpy")
- Sea-run trout
 - Steelhead, Cutthroat, Dolly Varden

www.wa.gov/wdfw/outreach/fishing/salmon.htm Ocean/ENVIR 260 Winter 2006 Lecture 3 © 2006 University of Washington

Definitions of Salmonid Clans

- "Evolutionarily Significant Unit" (ESU)
 - Definition used for purposes of Endangered Species Act
 - Group of populations or stocks
 - Similar to metapopulation
 - Reproductively isolated

-And-

- Important component of the evolutionary legacy of the species
 - Genetics, geography, habitat adaptation

Ocean/ENVIR 260 Winter 2006

Lecture 3 © 2006 University of Washington

The Salmonid Life Cycle

- Fry
 - Emerge from redd late winter
 - Swim & feed in stream
 - Must take refuge from current & predators
- Parr
 - Develop vertical stripes
 - Slowly migrate downstream few weeks to 2 years

- Reach salt water April - August Ocear/ENVIR 260 Winter 2006 Lecture 3 © 2006 University of Washington

9

- Spend 2-5 years in the ocean
 - Depending on species
- Migrate long distances to feed
 - · Along West Coast to Alaska or into open Pacific

© 2006 University of Washingto

- Depending on species
- Spawners
 - Return to stream of origin in Oct.-Nov.
 - Some species return in spring & summer

The Salmonid Spawning Ritual

- · Usually seek smaller tributaries
 - Gravelly "riffles"
 - Faster-moving shallow water
 - Simple courtship behavior
 - Simultaneous release of eggs & "milt"
 - Both must fertilize within minutes or become inviable
 - Female agitates gravel with tail
 - Buries eggs 2-3" deep in gravel
 - Adults die

Ocean/ENVIR 260 Winter 2006

Lecture 3 © 2006 University of Washington

The Salmonid Life Cycle: Variations

14

- Fresh water
 - May reside from a few days to an entire year or longer
- Ocean
 - May return after 3 months ("jacks")
 - Most return after 2-4 years (range 1-6)
 - Diverse migratory routes in ocean

```
Ocean/ENVIR 260 Winter 2006
```

Lecture 3 © 2006 University of Washingto

The Salmonid Life Cycle: Variations

15

13

- Spawning varies widely by river & stock
 - Spring returners tend to spawn upstream
 - Many early Puget Sound runs believed extinct
 - Fall returners tend to spawn in lower reaches
 - Dominant in Puget Sound
 - Peak late August to mid-October
- · Some straying to rivers adjacent to origin
 - Reduces risk that a stock will be eliminated
 - Variable timing a hedge on annual variability

19

- · Gravel in stream bottom
 - Spaces admit salmon eggs
 - Clean water supplies oxygen & removes wastes
- Flow environment

Ocean/ENVIR 260 Winter 2006

 Areas of slow flow to allow eggs, alevins, fry to remain in nursery grounds

© 2006 University of Washington

 Areas of rapid flow to help parr move downstream when ready

Lecture 3

Essential Features of Stream Environment

- Riparian (=streamside) vegetation
 - Shades stream to keep water cool
 - Supports insects that fry eat
 - Provides refuge from predators
 - Stabilizes banks
- "Large woody debris" (LWD)
 - Used to be removed because it obstructs flow
 - But creates pools & side channels
 - Provide refuge from high flows
 - Provides cover from sun & predators ²⁰

Essential Features of Stream Environment

• Wetlands

- Reservoirs for surface & ground water
 - Absorb water during high flow to reduce floods
 - Release water during drought to maintain stream flow
 - Filter pollutants & excess nutrients
- Salmon habitat
 - Side-channels & pools for rearing of fry
 - Reduced flow environment

Rich food supply

Ocean/ENVIR 260 Winter 2006 Lecture 3 © 2006 University of Washington

Essential Features of Stream Environment

22

- Spawned-out adult carcasses
 - Provide nutrients to stream

Ocean/ENVIR 260 Winter 2006

- Support production of prey for fry
- Food source for terrestrial animals
 - 22 species of birds & mammals
 - Fertilize terrestrial plants in turn

Impacts on Salmon in Streams

23

21

- Siltation—fine sediment particles
 - Fill gravel spaces & smother eggs & alevins
- Floods
 - Sweep gravel downstream & deposit silt
- Removal of riparian vegetation
 - Allows bank erosion & siltation
 - Allows overheating of water
 - Removes refuge for fry
- Blockage by roads, culverts, etc.

Ocean/ENVIR 260 Winter 2006 Lecture 3 © 20

© 2006 University of Washington

Lecture 3 © 2006 University of Washingto

Alterations of **Estuarine Habitat**

- Diking, dredging, filling of coastal wetlands & mud flats
 - Farmland, ports
- Elimination of vegetation
 - Shading by piers & buildings, excess sediment
- "Armoring" of the shore
 - Sea walls & bulkheads
 - Increased wave energy removes fine

```
sediment
                     Lecture 3 © 2006 University of Washingto
```

26

Human Impacts on Salmon Stocks • The Four H's - Habitat (our main focus) - Hydropower

- · Dam & irrigation impacts on rivers
- Blockage of up- & downstream salmon passage
 - Fish ladders aren't everything
 - Not a major issue on Puget Sound
- Alteration of up- & downstream flow
- Hatcheries
- Harvest

27

- Salmon Stock Status Peak chinook salmon return to Puget Sound 1908 (Shared Strategy Chapter 1) - Estimated return of 690,000 fish based on cannery output - Mid-1990's returns of "wild" fish much lower • 13,000 North Sound
 - 11.000 South Sound
 - Most return to Skagit & Snohomish watersheds

Lecture 3 © 2006 University of Washingto

- Vulnerable to localized impacts
- 9 of 31 original stocks believed extinct

Ocean/ENVIR 260 Winter 2006

Lecture 3 © 2006 University of Washington

Difficult to determine how many fish spawn in the wild
Ocean/ENVIR 260 Winter 2006
Lecture 3
© 2006 University of Washington

